
Enhanced RTMP (V2)

Table of Contents
● Table of Contents
● Document Status
● Documentation Versioning
● Alpha Version Disclaimer for Enhanced RTMP v*
● Usage License
● Terminology
● Abstract
● Introduction
● Conventions
● Simple Data Types
● RTMP Message Format
● FLV File Format Overview
● Enhancements to RTMP and FLV
● Enhancing onMetaData
● Reconnect Request
● Enhanced Audio
● Enhanced Video
● Metadata Frame
● Multitrack Streaming via Enhanced RTMP
● Enhancing NetConnection connect Command
● Action Message Format (AMF): AMF0 and AMF3
● Protocol Versioning
● References
● Appendix
● Document Revision History and Guidelines

Document Status
Author: Slavik Lozben (Veovera Software Organization)(VSO)
Contributors: Adobe, Google, Twitch, Jean-Baptiste Kempf (FFmpeg, VideoLAN), pkv (OBS), Dennis Sädtler (OBS), Xavier Hallade (Intel
Corporation), Luxoft, SplitmediaLabs Limited (XSplit), Craig Barberich (VSO), Michael Thornburgh
Status: v2-2024-07-12-a1

1

Documentation Versioning

Overview
This section outlines our standardized approach for versioning our specification documentation. Effective versioning ensures consistency,
enables users to identify the latest version easily, and facilitates collaboration among team members.

File Naming Convention
We name the documentation files with a clear identifier and the major version number.

Example:
enhanced-rtmp-v2.pdf

Version Information Inside the Document
We include a dedicated section or metadata within each document to specify the version details which includes the major version number,
date, and stage of development (alpha/beta/release).

Example:
Status: v2-2024-02-26-a1

Calendar Versioning Format Description
The format for versioning documents is structured as follows:

● v#-yyy-mm-dd-[a|b|r]#:
○ v#: Major version number for tracking the progression of the E-RTMP development.
○ yyyy-mm-dd: Date when the document was updated.
○ [a|b|r]: Suffix to distinguish between the alpha, beta, and release stage.
○ #: Minor version number for a particular date. Increments for multiple versions on the same date.

This format provides a comprehensive overview of each version's status and chronological order, facilitating effective tracking and
management of the E-RTMP specification development.

2

Alpha Version Disclaimer for Enhanced RTMP v*
This document details an alpha version of the enhanced Real-Time Messaging Protocol (a.k.a., E-RTMP) specification, version "*". As we
continue to refine and enhance the protocol, we remain open to implementing necessary updates based on user feedback and further testing.
While there is a possibility of introducing breaking changes during the alpha stage, we are committed to maintaining the integrity of the
General Availability (GA) versions and strive to ensure they remain free from breaking changes.

We encourage developers, implementers, and stakeholders to actively participate in this development phase. Your feedback, whether it be bug
reports, feature suggestions, or usability improvements, is invaluable and can be submitted via new issues in our GitHub repository at
<https://github.com/veovera/enhanced-rtmp>. We are committed to transparently communicating updates and changes, ensuring that all
stakeholders are informed and involved.

Engaging with the alpha version provides a unique opportunity to influence the final specifications of E-RTMP version "*". We value your
input and look forward to collaborating with you on this exciting journey towards developing a more robust and efficient protocol.

Usage License
Copyright 2022-2024 Veovera Software Organization

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

<https://www.apache.org/licenses/LICENSE-2.0>

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here. Definitions below are reproduced from [RFC2119].

● MUST: This word, or the terms "REQUIRED" or "SHALL", means that the definition is an absolute requirement of the specification.

3

https://github.com/veovera/enhanced-rtmp
https://www.apache.org/licenses/LICENSE-2.0
https://datatracker.ietf.org/doc/html/bcp14

● MUST NOT: This phrase, or the phrase "SHALL NOT", means that the definition is an absolute prohibition of the specification.
● SHOULD: This word, or the adjective "RECOMMENDED", means that there may exist valid reasons in particular circumstances to ignore a

particular item, but the full implications must be understood and carefully weighed before choosing a different course.
● SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED", means that there may exist valid reasons in particular circumstances when the

particular behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before
implementing any behavior described with this label.

● MAY: This word, or the adjective "OPTIONAL", means that an item is truly optional. One vendor may choose to include the item because a
particular marketplace requires it or because the vendor feels that it enhances the product while another vendor may omit the same
item. An implementation which does not include a particular option MUST be prepared to interoperate with another implementation which
does include the option, though perhaps with reduced functionality. In the same vein an implementation which does include a particular
option MUST be prepared to interoperate with another implementation which does not include the option (except, of course, for the
feature the option provides.)

Additionally we add the keyword [DEPRECATED] to the set of keywords above.

● DEPRECATED: This word means a discouragement of use of some terminology, feature, design, or practice, typically because it has been
superseded or is no longer considered efficient or safe, without completely removing it or prohibiting its use. Typically, deprecated
materials are not completely removed to ensure legacy compatibility or back-up practice in case new methods are not functional in an
odd scenario. It can also imply that a feature, design, or practice will be removed or discontinued entirely in the future.

Abstract
In the rapidly evolving media streaming landscape, there is a pressing need to update legacy protocols to align with modern technological
standards. The Real-Time Messaging Protocol [RTMP] and Flash Video [FLV] file format, introduced in 2002, have been pivotal and continue to
be vital especially in live broadcasting. Despite RTMP widespread use, it has shown signs of aging, particularly in the lack of support for
contemporary video codecs (e.g., VP8, VP9, HEVC, AV1) and audio codecs (Opus, FLAC, AC-3, E-AC-3). Recognizing this, Veovera Software
Organization (VSO), in collaboration with industry giants like Adobe, YouTube, and Twitch, and other key stakeholders, has embarked on a
mission to rejuvenate RTMP, ensuring it meets the demands of contemporary streaming needs.

This document details the comprehensive enhancements made to the RTMP and FLV specifications, aimed at revitalizing the technology for
current and future media demands. Our strategic approach prioritizes innovation while maintaining backward compatibility, thereby augmenting
RTMP's utility without undermining existing infrastructures. Some of the key advancements include:

● Advanced Audio Codecs: Integration of codecs like AC-3, E-AC-3, Opus, and FLAC to meet diverse audio quality and compression needs,
ensuring compatibility with modern systems.

● Multichannel Audio Configurations: Support for multichannel audio to enhance auditory experiences without compromising existing setups.
● Advanced Video Codecs: Introduction of codecs such as VP8, VP9, HEVC and AV1 with HDR support to meet modern display and content

standards.
● Video Metadata: Expansion of VideoPacketType.Metadata to support a broader range of video metadata types.

4

● FourCC Signaling: Inclusion of FourCC signaling for advanced codecs mentioned above, as well as for legacy codecs such as AVC, AAC, and
MP3.

● Multitrack Capabilities: New audio and video multitrack capabilities for concurrent management and processing of multiple media
streams, enhancing media experiences.

● Reconnect Request Feature: A new Reconnect Request feature improves connection stability and resilience.

The additional audio and video codecs supported by enhanced RTMP are summarized in the following table:

Table: Additional audio and video codecs for E-RTMP
Additional Audio Codec Notes

AC-3
AC-3 and E-AC-3 have significantly influenced the surround
sound market by offering versatile and scalable audio
solutions for both physical and streaming media. Their
balance of complexity and performance makes them enduring
standards in multichannel audio technology.

E-AC-3

Opus

Popular in both hardware and software streaming solutions,
the [WebCodecs] audio codec registry also includes support
for these widely used audio formats.

FLAC

AAC (added FOURCC signaling)

MP3 (added FOURCC signaling)

Additional Video Codec

AVC (a.k.a., H.264, added FOURCC signaling)

Popular in both hardware and software streaming solutions,
the [WebCodecs] video codec registry also includes support
for these widely used video formats.

HEVC (a.k.a., H.265)

VP8 (webRTC officially supports this codec)

VP9

AV1

These strategic enhancements position RTMP as a robust, future-proof standard in the streaming technology arena. Veovera is committed to
open collaboration and values community input. We encourage participation in the ongoing development process through our GitHub repository,
where you can access detailed documentation, contribute to the project, and share insights, fostering a vibrant ecosystem around enhanced
E-RTMP.

5

https://docs.google.com/document/d/1aY1bF3RI_TKgd-VpTEUzuWK9FEoS9i0lyXitcF_xavo/edit#heading=h.a854yypnicmv
https://docs.google.com/document/d/1aY1bF3RI_TKgd-VpTEUzuWK9FEoS9i0lyXitcF_xavo/edit#heading=h.a854yypnicmv
https://github.com/veovera/enhanced-rtmp

Introduction
This document describes enhancements to legacy [RTMP] and legacy [FLV], introducing support for new media codecs, HDR capability, and more.
A primary objective is to ensure these enhancements do not introduce breaking changes for established clients or the content they stream. As
such, legacy RTMP and legacy FLV specifications remain integral to the RTMP ecosystem. While this updated specification aims to minimize
redundancy with previous versions, when combined with previous-generation documentation, it provides a comprehensive overview of the RTMP
solution. We've drawn from several legacy references, which are as follows:

● Adobe legacy [RTMP] specification
● Adobe legacy [FLV] specification
● Additional [LEGACY] specifications

Conventions
This document employs certain conventions to convey particular meanings and requirements. The following section outlines the notation,
terminology, and symbols used throughout to ensure clarity and consistency. These conventions provide insight into the ethos of how the
E-RTMP specification has been crafted and should be interpreted.

● Enhanced RTMP: refers to a series of improvements made to the legacy Real-Time Messaging Protocol [RTMP], originally developed by
Adobe. It's important to note that "enhanced RTMP" is not a brand name but a term used to distinguish this advanced version from the
legacy RTMP specification. Endorsed by Adobe and widely adopted across the industry, enhanced RTMP serves as the current standard for
RTMP solutions. This updated protocol includes various enhancements to both legacy RTMP and the legacy [FLV] formats. Please be aware
that the term "enhanced RTMP" (a.k.a., E-RTMP) signifies ongoing updates to RTMP and FLV, and does not pertain to any specific
iteration or release.

● Pseudocode: Pseudocode has been provided to convey logic on how to interpret the E-RTMP binary format. The code style imitates a cross
between TypeScript and C. The pseudocode was written in TypeScript and validated using VSCode to ensure correct syntax and catch any
minor typographical errors. Below are some further explanations:

○ Enumerations are used to define valid values
○ Pseudo variables are named in a self-descriptive manner. For instance:

`videoCommand = UI8 as VideoCommand`

The line above indicates that an unsigned 8-bit value is read from the bitstream. The legal values correspond to the enumerations
within the VideoCommand set, and the pseudo variable videoCommand now holds that value.

○ The pseudocode is written from the point of view of reading (a.k.a., parsing) the bitstream. If you are writing the bitstream,
you can swap source with destination variables.

○ E-RTMP typically employs camelCase naming conventions for variables. In contrast, the naming convention for legacy RTMP
specification is usually preserved as is.

6

○ Handshake and Enhancing NetConnection connect command: The E-RTMP specification generally prioritizes the client's perspective
over that of the server. To shift this focus and view the interaction from the server's side, the server should echo back certain
enhancement information.

When the client informs the server of the enhancements it supports via the connect command, the server processes this command and
responds using the same transaction ID. The server's response string will be one of the following: _result, _error, or a specific
method name. A command string of _result or _error indicates a response rather than a new command.

During this response, the server will include an object containing specific properties as one of the arguments to _result. It is
at this point that the server should indicate its support for E-RTMP features. Specifically, the server should denote its
capabilities through attributes such as videoFourCcInfoMap, capsEx, and other defined properties.

○ The ethos of this pseudocode is to provide a high-level overview of the data structures and operations taking place on the wire.
While it accurately represents the bytes being transmitted, it's important to note that the logic is not exhaustive.
Specifically, this pseudocode does not cover all possible cases, nor does it always include items such as initialization logic,
looping logic or error-handling mechanisms. It serves as a foundational guide that can be implemented in various ways, depending
on specific needs and constraints.

● Unrecognized value: If a value in the bitstream is not understood, the logic must fail gracefully in a manner appropriate for the
implementation.

● Table naming: Each table in the document is named according to the specific content or subject it is describing.
● Bitstream optimization: One of the guiding principles of E-RTMP is to optimize the number of bytes transmitted over the wire. While

minimizing payload overhead is a priority, it is sometimes more important to simplify the logic or enhance extensibility. For example,
although more optimal methods for creating a codec ID than using FOURCC may exist, such approaches could render the enhancement
non-standard and more challenging to extend and maintain in the future.

● Capitalization rules: Another guiding principle in the E-RTMP is the standardization of capitalization for types. The original
documentation capitalized types such as Number, String, and Boolean, and even included various other spellings. The E-RTMP adopts
lowercase spelling for terms, such as number, string, and boolean. This change emphasizes that these types are simple, not objects.

● ECMA Array vs Object: In the world of AMF (Action Message Format), both ECMA Array and Object are used to store collections of
properties. A property is simply a pairing of a name with a value. In enhanced RTMP, the term Object is specifically used to indicate
the Object Type. In the past, people have sometimes used ECMA Array and Object as if they were the same thing. However, for better
coding practices, it's recommended to use Object when you're creating AMF data. When you're reading or decoding AMF data, you should be
prepared to handle either ECMA Array or Object for greater flexibility and robustness.

● Default values: Unless explicitly called out, there should be no assumptions made regarding default values, such as null or undefined.
● Legacy vs. Enhanced Properties: In the documentation, an effort has been made to distinguish between legacy properties and newly

defined ones through color coding, such as using bold text or different background colors for enhancements. While this color coding is
not guaranteed to be consistent, the distinctions between values defined in E-RTMP should be readily apparent.

● Capability flags: The capabilities flags, exchanged during a connect handshake, may not cover all possible functionalities. For
instance, a client might indicate support for multitrack processing without specifying its ability to encode or decode multitrack
streams. In scenarios where a client, capable of issuing a play command, declares multitrack support, it MUST be equipped to handle the
playback of such streams. Similarly, if a client is aware of the server's multitrack capabilities, it MAY opt to publish a multitrack
stream.

7

● Quotation Marks and Emphasis Guidelines: Ultimately, the context should drive the meaning, but we make an effort to leverage quotation
marks and emphasis (i.e., bold) to maintain readability. We aim to avoid syntactic sugar as much as possible to ensure the document
remains straightforward, easy to read, scan, and understand. The conventions for using double quotes ("), back quotes (`), and emphasis
in this document to ensure clarity and consistency are as follows:

○ Double quotes are used for: direct quotations, titles of short works, and when referencing a specific term or phrase.
○ Back quotes are used for: code snippets, commands, or technical terms.
○ Bold is used for: emphasis on important terms or phrases. Sometimes, back quotes and bold can be interchanged for ease of

reading.

Simple Data Types
The following data types are used in [RTMP] bitstreams and [FLV] files. FOURCC was introduced to support E-RTMP.

Table: Simple data types
Type Definition

0x... Hexadecimal value

UB[n] Bit field with unsigned n-bit integer, where n is in the range 1 to 31,
excluding 8, 16, 24

FOURCC Four-character ASCII code, such as "av01", encoded as UI32

SI8 Signed 8-bit integer

SI16 Signed 16-bit integer

SI24 Signed 24-bit integer

SI32 Signed 32-bit integer

UI8 Unsigned 8-bit integer

UI16 Unsigned 16-bit integer

UI24 Unsigned 24-bit integer

UI32 Unsigned 32-bit integer

xxx[] Array of type xxx. Number of elements to be inferred

xxx[n] Array of n elements of type xxx

[xxx] Array of one element of type xxx

^^>
Note: Unless specifically called out, multi-byte integers SHALL be stored in big-endian byte order
^^>

8

RTMP Message Format
Adobe's Real-Time Messaging Protocol [RTMP] is an application-level protocol designed for the multiplexing and packetizing of multimedia
streams—such as audio, video, and interactive content, for transmission over network protocols like TCP. A fundamental feature of RTMP is
the Chunk Stream, which facilitates the multiplexing, packetizing, and prioritization of messages, integral to the protocol's real-time
capabilities.

The legacy RTMP specification in Section 6.1 elaborates on the RTMP Message Format, providing precise encoding guidelines for the RTMP
message header, inclusive of field widths and byte order. However, this portrayal might be somewhat confusing because RTMP messages, when
transported over the Chunk Stream, don't literally conform to this depicted format. An RTMP Message is divided into two principal
components: a message virtual header and a message payload. The "virtual" descriptor indicates that while RTMP messages are carried within
the RTMP Chunk Stream, their headers are conceptually encoded as Chunk Message Headers. When these are decoded from the RTMP Chunk Stream,
the underlying transport layer, the resulting format is to be understood as a virtual header. This abstract representation aligns with the
structured format and semantics detailed in the legacy RTMP specification. Detailed next is the format of the message virtual header and
some additional related information.

● Message virtual header
```
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|MessageType ID | Payload length |
| (1 byte) | (3 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Timestamp |
| (4 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Stream ID |
| (3 bytes) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

● There are two message types reserved for media messages:
○ The message type value of 8 is reserved for audio message
○ The message type value of 9 is reserved for video messages

● The message payload follows the header and may contain various types of content, such as compressed audio or video data. RTMP itself
does not recognize or process the payload's content. If new codec types are to be added, they must be defined where the actual payload
internals are outlined. FLV is a container file format where the specifics of the AV payload, including the codecs, are defined.

● Please refer to the legacy RTMP specification (in various locations) and the legacy [FLV] specification (Annex E) for details on the
endianness (a.k.a., byte order) of the data format on the wire.

9

https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=22

FLV File Format Overview
An [FLV] file is a container for AV (Audio and Video) data. The file consists of alternating back-pointers and tags, each accompanied by
data related to that tag. Each TagType within an FLV file is unsigned and defined by 5 bits. AUDIODATA has a TagType of 8, and VIDEODATA has
a TagType of 9.
^^>
Note: Each TagType corresponds directly to the same MessageType ID, defined by UI8, in the [RTMP] specification. This alignment is
intentional.
^^>
TagType values of 8 or 9 are accompanied by an AudioTagHeader or VideoTagHeader respectively. While RTMP is commonly associated with FLV, it
is important to note that RTMP is a protocol, whereas FLV is a file container format. This distinction is why they were originally defined
in separate specifications. This enhancement specification aims to improve both RTMP and FLV.

Pre 2023 AudioTagHeader Format
Below is the AudioTagHeader format for the legacy FLV specification:

Table: FLV specification AudioTagHeader
Field Type Comment

SoundFormat UB[4]

Format of SoundData. The following values are defined:
0 = Linear PCM, platform endian
1 = ADPCM
2 = MP3
3 = Linear PCM, little endian
4 = Nellymoser 16 kHz mono
5 = Nellymoser 8 kHz mono
6 = Nellymoser
7 = G.711 A-law logarithmic PCM
8 = G.711 mu-law logarithmic PCM
9 = Reserved
10 = AAC
11 = Speex
12 = Reserved
13 = Reserved
14 = MP3 8 kHz
15 = Device-specific sound
Formats 7, 8, 14, and 15 are reserved.
AAC is supported in Flash Player 9,0,115,0 and higher.
Speex is supported in Flash Player 10 and higher.

SoundRate UB[2]

Sampling rate. The following values are defined:
0 = 5.5 kHz
1 = 11 kHz
2 = 22 kHz
3 = 44 kHz

10

https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=76

SoundSize UB[1]

Size of each audio sample. This parameter only pertains to
uncompressed formats. Compressed formats always decode
to 16 bits internally.
0 = 8-bit samples
1 = 16-bit samples

SoundType UB[1]
Mono or stereo sound 0 = Mono sound
1 = Stereo sound

AACPacketType
IF SoundFormat == 10
UI8

The following values are defined: 0 = AAC sequence header
1 = AAC raw

Pre 2023 VideoTagHeader Format
Below is the VideoTagHeader format for the legacy FLV specification:

Table: FLV specification VideoTagHeader
Field Type Comment

Frame Type UB[4]

Type of video frame. The following values are defined:
1 = key frame (for AVC, a seekable frame)
2 = inter frame (for AVC, a non-seekable frame)
3 = disposable inter frame (H.263 only)
4 = generated key frame (reserved for server use only)
5 = video info/command frame

CodecID UB[4]

Codec Identifier. The following values are defined:
2 = Sorenson H.263
3 = Screen video
4 = On2 VP6
5 = On2 VP6 with alpha channel
6 = Screen video version 2
7 = AVC

AVCPacketType IF CodecID == 7
UI8

The following values are defined:
0 = AVC sequence header
1 = AVC NALU
2 = AVC end of sequence (lower level NALU sequence ender is
not REQUIRED or supported)

CompositionTime IF CodecID == 7
SI24

IF AVCPacketType == 1
Composition time offset
ELSE
0
See ISO/IEC 14496-12, 8.15.3 for an explanation of
composition times. The offset in an FLV file is always in
milliseconds.

11

https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=78

Enhancements to RTMP and FLV
Within the following sections, this document provides a comprehensive overview of the enhancements made to [RTMP] and [FLV]. Together, these
improvements constitute the enhanced RTMP also known as E-RTMP. These enhancements are discussed in detail, highlighting their impact and
benefits.

Enhancing onMetaData
[FLV] metadata SHALL be encapsulated within a SCRIPTDATA segment, which includes a ScriptTagBody encoded in the Action Message Format (AMF).
Importantly, this metadata SHALL always remain unencrypted, even when the FLV content itself is encrypted. This design choice is essential
for allowing various FLV parsers to successfully stream the FLV content and for enabling media players to provide contextual information to
the user.

The ScriptTagBody is structured to encapsulate method invocations. It consists of an item containing a method name (e.g., onMetaData) along
with a corresponding set of arguments.

To signal FLV metadata, the item within the ScriptTagBody MUST encapsulate the method name onMetaData, along with a single argument of type
ECMA array. This array holds metadata properties, the availability of which may vary depending on the software used to create the FLV.
Typical onMetaData argument properties include, but are not limited to:

Table: Typical properties found in the onMetaData argument object
Property Type Comment

audiocodecid number Audio codec ID used in the file: See AudioTagHeader of the legacy [FLV]
specification for available CodecID values.

When [FourCC] is used to signal the codec, this property is set to a FOURCC
value. Note: A FOURCC value is big endian relative to the underlying ASCII
character sequence (e.g., "Opus" == 0x4F707573 == 1332770163.0).

audiodatarate number Audio bitrate, in kilobits per second

audiodelay number Delay introduced by the audio codec, in seconds

audiosamplerate number Frequency at which the audio stream is replayed

audiosamplesize number Resolution of a single audio sample

canSeekToEnd boolean Indicating the last video frame is a key frame

creationdate string Creation date and time

duration number Total duration of the file, in seconds

filesize number Total size of the file, in bytes

framerate number Number of frames per second

height number Height of the video, in pixels

stereo boolean Indicates stereo audio

12

https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=80
https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=80
https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=76

videocodecid number Video codec ID used in the file: See VideoTagHeader of the legacy [FLV]
specification for available CodecID values.

When [FourCC] is used to signal the codec, this property is set to a FOURCC
value. Note: A FOURCC value is big endian relative to the underlying ASCII
character sequence (e.g., "av01" == 0x61763031 == 1635135537.0).

videodatarate number Video bitrate, in kilobits per second

width number Width of the video, in pixels

^^>
Note: The properties audiocodecid and videocodecid have been enhanced to support FOURCC (Four-byte ASCII code) values. These values are
interpreted as UI32 (e.g., "av01").
^^>

Reconnect Request

Objective
[RTMP] packetizes multimedia streams using a suitable transport protocol, typically a persistent TCP connection. There are instances when a
streaming platform may request the streaming client to reconnect, such as:

● When live streaming servers undergo updates.
● When there's a need to redirect the client to a different server instance, ensuring optimal load balancing and precise geolocation

mapping.

To accommodate these needs, a NetConnection.Connect.ReconnectRequest status event has been introduced as part of the NetConnection onStatus
command.

NetConnection Commands
NetConnection establishes a bidirectional link between a client and a server, allowing for asynchronous Remote Procedure Calls (RPCs). The
following commands (a.k.a., predefined RPCs) can be issued via NetConnection:

● connect
● createStream
● deleteStream
● onStatus

The onStatus command has been enhanced to include the capability to request a client to reconnect. Servers can issue an onStatus command to
prompt clients to adapt to changes in NetConnection status. The structure of this command, as relayed from the server to the client, is
outlined below:

13

https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=78

Table: Server to client, NetConnection onStatus command
Field Name Type Description

Command Name string Name of the command. Set to onStatus

Transaction ID number Transaction ID set to 0. (i.e., no response needed)

Command Object null There is no command object for onStatus command.

Info Object Object An AMF-encoded object, the properties of which are utilized by the onStatus command. The Info
Object provides information about the status of the current connection.

The following is a description of AMF-encoded name-value pairs in the Info Object for the onStatus command when handling reconnect. It MAY
contain other properties as appropriate to the client.

Table: Info Object parameter for onStatus command when handling reconnect
Property Type Description Example Value

tcUrl
(optional)

string Absolute or relative URI reference of the server to which to
reconnect. If not specified, use the tcUrl for the current
connection. A relative URI reference should be resolved
relative to the tcUrl for the current connection.

1. rtmp://foo.mydomain.com:1935/realtimeapp
2. rtmp://127.0.0.1/realtimeapp
3. //192.0.2.0/realtimeapp
4. /realtimeapp

code string A string identifying the event that occurred. To reconnect
code MUST be set to NetConnection.Connect.ReconnectRequest

NetConnection.Connect.ReconnectRequest

description
(optional)

string A string containing human-readable information about the
message. Not every information object includes this
property.

The streaming server is undergoing updates.

level string A string indicating the severity of the event. To reconnect
the level MUST be set to status.

status

Message Flow When Handling NetConnection.Connect.ReconnectRequest
1. Prior to the shutdown of the live streaming server or when the server intends to remap the client to another server instance, it

dispatches an onStatus command to the client with a code of NetConnection.Connect.ReconnectRequest. If the server aims to remap the
client, it MUST set the tcUrl property in the Info Object. In order to avoid a disruption, the server managing the original connection
(commonly referred to as the "old server") SHOULD continue processing messages from the client until the client disconnects.

2. When the client receives the NetConnection.Connect.ReconnectRequest event, it persists in streaming to/from the current server up to
the next appropriate media boundary, such as a keyframe. Subsequently, it establishes a connection with a new server and disconnects
from the old server. If the Info Object includes the tcUrl property, the client uses this URL for the reconnection process. Absent this
property, the client defaults to the tcUrl for the current connection.

3. While the client can establish a new connection before severing the original one, it SHOULD exercise caution to ensure the Quality of
Service (QoS) is not compromised.

The capability to support the NetConnection.Connect.ReconnectRequest event becomes evident during the initial connect phase. Detailed
guidelines for signaling reconnect ability can be found in the Enhancing NetConnection connect Command section.

14

Detailed Overview of the onStatus Command for NetConnection
The server-to-client onStatus command for NetConnection, serves a crucial function within the RTMP framework. Though the legacy RTMP
specification may not have detailed this command, the goal here is to offer an overview for a better understanding.

Both clients and servers can initiate RPCs at the receiving end, with some RPCs being predefined as commands. onStatus stands out as one
such essential command.

When using the onStatus command, the goal is to inform the client about the status of the connection. Each dispatched command message
comprises the following elements:

● Command Name: type string
● Transaction ID: type number
● Command Object (set to null when dispatching an onStatus command): type Object
● Info Object (which can be viewed as Optional Arguments): type Object

Both the Command Object and the Info Object offer additional context and details for the command. The onStatus command is triggered whenever
there's a status change or an error concerning the NetConnection. To handle this information, you should define a callback function.
```js
// Sample pseudocode for the onStatus callback function
nc.onStatus = function(infoObject) {
// Handle the status change or error here.

}
```
infoObject is an AMF-encoded object with properties that provide information about the status of a NetConnection. It contains at least the
following three properties, but MAY contain other properties as appropriate to the client.

Table: infoObject for onStatus command
Property Type Description Example Value

code string A string identifying the event that occurred. NetConnection.Connect.Success

description
(optional)

string A string containing human-readable information about the
message. Not every information object includes this
property.

The connection attempt succeeded.

level string There are three established values for level: status,
warning, and error.

status

The table below provides examples of code, level, and description property values. Please note that this is not an exhaustive list, and not
all entries may apply to every type of client. Additionally, the description property values included are merely illustrative examples;
developers are responsible for conveying the appropriate meaning in their specific solutions.

Table: code, level and description values for infoObject used by onStatus
Code Level Description

15

NetConnection.Call.Failed error The NetConnection.call() method was not able to invoke the server-side method or command.

NetConnection.Connect.AppShutdown error The application has been shut down (for example, if the application is out of memory resources
and must shut down to prevent the server from crashing) or the server has shut down.

NetConnection.Connect.Closed status The connection was closed successfully.

NetConnection.Connect.Failed error The connection attempt failed.

NetConnection.Connect.Rejected error The client does not have permission to connect to the application.

NetConnection.Connect.Success status The connection attempt succeeded.

NetConnection.Connect.ReconnectRequest status The server is requesting the client to reconnect.

NetConnection.Proxy.NotResponding error The proxy server is not responding. See the ProxyStream class.

Enhanced Audio
The AudioTagHeader has been extended to define additional audio codecs, multichannel audio, multitrack capabilities, signaling support, and
additional miscellaneous enhancements, while ensuring backward compatibility. This extension is termed the ExAudioTagHeader and is designed
to be future-proof, allowing for the definition of additional audio codecs, features, and corresponding signaling.

During the parsing process, the logic MUST handle unexpected or unknown elements gracefully. Specifically, if any critical signaling or
flags (e.g., AudioPacketType and AudioFourCc) are not recognized, the system MUST fail in a controlled and predictable manner.
^^>
Important: A single audio message for a unique timestamp may include a batch of AudioPacketType values (e.g., multiple TrackId values). When
parsing an audio message, the bitstream MUST be processed completely to ensure all payload data has been handled.
^^>
Table: Extended AudioTagHeader

Description Of Bitstream Enumerated Types

soundFormat = UB[4] as SoundFormat

if (soundFormat != SoundFormat.ExHeader) {
// See AudioTagHeader of the legacy [FLV] specification for for detailed format
// of the four bits used for soundRate/soundSize/soundType
//
// Note: soundRate, soundSize and soundType formats have not changed.
// if (soundFormat == SoundFormat.ExHeader) we switch into FOURCC audio mode
// as defined below. This means that soundRate, soundSize and soundType
// bits are not interpreted, instead the UB[4] bits are interpreted as an
// AudioPacketType
soundRate = UB[2]
soundSize = UB[1]
soundType = UB[1]

}

enum SoundFormat {
LPcmPlatformEndian = 0,
AdPcm = 1,
Mp3 = 2,
LPcmLittleEndian = 3,
Nellymoser16KMono = 4,
Nellymoser8KMono = 5,
Nellymoser = 6,
G711ALaw = 7,
G711MuLaw = 8,
ExHeader = 9, // new, used to signal FOURCC mode
Aac = 10,
Speex = 11,
// 12 - reserved
// 13 - reserved
Mp3_8K = 14,
Native = 15, // Device specific sound

}

ExAudioTagHeader Section

16

https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=76

Note: ExAudioTagHeader is present if (soundFormat == SoundFormat.ExHeader)

Description Of Bitstream Enumerated Types

//
// process ExAudioTagHeader
//
processAudioBody = false
if (soundFormat == SoundFormat.ExHeader) {
processAudioBody = true

// The UB[4] bits are interpreted as AudioPacketType
// instead of sound rate, size and type
audioPacketType = UB[4] as AudioPacketType

if (audioPacketType == AudioPacketType.Multitrack) {
isAudioMultitrack = true;
audioMultitrackType = UB[4] as AvMultitrackType

// Fetch AudioPacketType for all audio tracks in the audio message.
// This fetch MUST not result in a AudioPacketType.Multitrack
audioPacketType = UB[4] as AudioPacketType

if (audioMultitrackType != AvMultitrackType.ManyTracksManyCodecs) {
// The tracks are encoded with the same codec. Fetch the FOURCC for them
audioFourCc = FOURCC as AudioFourCc

}
} else {
audioFourCc = FOURCC as AudioFourCc

}
}

enum AudioPacketType {
SequenceStart = 0,
CodedFrames = 1,

// RTMP includes a previously undocumented "audio silence" message.
// This silence message is identified when an audio message contains
// a zero-length payload, or more precisely, an empty audio message
// without an AudioTagHeader, indicating a period of silence. The
// action to take after receiving a silence message is system
// dependent. The semantics of the silence message in the Flash
// Media playback and timing model are as follows:
//
// - Ensure all buffered audio data is played out before entering the
// silence period:
// Make sure that any audio data currently in the buffer is fully
// processed and played. This ensures a clean transition into the
// silence period without cutting off any audio.
//
// - After playing all buffered audio data, flush the audio decoder:
// Clear the audio decoder to reset its state and prepare it for new
// input after the silence period.
//
// - During the silence period, the audio clock can't be used as the
// master clock for synchronizing playback:
// Switch to using the system's wall-clock time to maintain the correct
// timing for video and other data streams.
//
// - Don't wait for audio frames for synchronized A+V playback:
// Normally, audio frames drive the synchronization of audio and video
// (A/V) playback. During the silence period, playback should not stall
// waiting for audio frames. Video and other data streams should
// continue to play based on the wall-clock time, ensuring smooth
// playback without audio.
//
// AudioPacketType.SequenceEnd is to have no less than the same meaning as
// a silence message. While it may seem redundant, we need to introduce
// this enum to ensure we can signal the end of the audio sequence for any
// audio track.
SequenceEnd = 2,

// 3 - Reserved

MultichannelConfig = 4,

// Turns on audio multitrack mode
Multitrack = 5,

// 6 - Reserved
// ...

17

// 14 - reserved
// 15 - reserved

}

enum AudioFourCc {
//
// Valid FOURCC values for signaling support of audio codecs
// in the enhanced FourCC pipeline. In this context, support
// for a FourCC codec MUST be signaled via the enhanced
// "connect" command.
//

// AC-3/E-AC-3 - <https://en.wikipedia.org/wiki/Dolby_Digital>
Ac3 = makeFourCc("ac-3"),
Eac3 = makeFourCc("ec-3"),

// Opus audio - <https://opus-codec.org/>
Opus = makeFourCc("Opus"),

// Mp3 audio - <https://en.wikipedia.org/wiki/MP3>
Mp3 = makeFourCc(".mp3"),

// Free Lossless Audio Codec - <https://xiph.org/flac/format.html>
Flac = makeFourCc("fLaC"),

// Advanced Audio Coding - <https://en.wikipedia.org/wiki/Advanced_Audio_Coding>
// The following AAC profiles, denoted by their object types, are supported
// 1 = main profile
// 2 = low complexity, a.k.a., LC
// 5 = high efficiency / scale band replication, a.k.a., HE / SBR
Aac = makeFourCc("mp4a"),

}

enum AvMultitrackType {
//
// Used by audio and video pipeline
//

OneTrack = 0,
ManyTracks = 1,
ManyTracksManyCodecs = 2,

// 3 - Reserved
// ...
// 15 - Reserved

}

ExAudioTagBody Section
Note: This ExAudioTagBody format is signaled by the presence of ExAudioTagHeader

Description Of Bitstream Enumerated Types

//
// process ExAudioTagBody

enum AudioChannelOrder {
//

18

https://en.wikipedia.org/wiki/Dolby_Digital
https://opus-codec.org/
https://en.wikipedia.org/wiki/MP3
https://xiph.org/flac/format.html
https://en.wikipedia.org/wiki/Advanced_Audio_Coding

//
while (processAudioBody) {
if (isAudioMultitrack) {
if (audioMultitrackType == AvMultitrackType.ManyTracksManyCodecs) {
// Each track has a codec assigned to it. Fetch the FOURCC for the next track.
audioFourCc = FOURCC as AudioFourCc

}

// Track Ordering:
//
// For identifying the highest priority (a.k.a., default track)
// or highest quality track, it is RECOMMENDED to use trackId
// set to zero. For tracks of lesser priority or quality, use
// multiple instances of trackId with ascending numerical values.
// The concept of priority or quality can have multiple
// interpretations, including but not limited to bitrate,
// resolution, default angle, and language. This recommendation
// serves as a guideline intended to standardize track numbering
// across various applications.
audioTrackId = UI8

if (audioMultitrackType != AvMultitrackType.OneTrack) {
// The `sizeOfAudioTrack` specifies the size in bytes of the
// current track that is being processed. This size starts
// counting immediately after the position where the `sizeOfAudioTrack`
// value is located. You can use this value as an offset to locate the
// next audio track in a multitrack system. The data pointer is
// positioned immediately after this field. Depending on the MultiTrack
// type, the offset points to either a `fourCc` or a `trackId.`
sizeOfAudioTrack = UI24

}
}

if (audioPacketType == AudioPacketType.MultichannelConfig) {
//
// Specify a speaker for a channel as it appears in the bitstream.
// This is needed if the codec is not self-describing for channel mapping
//

// set audio channel order
audioChannelOrder = UI8 as AudioChannelOrder

// number of channels
channelCount = UI8

if (audioChannelOrder == AudioChannelOrder.Custom) {
// Each entry specifies the speaker layout (see AudioChannel enum above
// for layout definition) in the order that it appears in the bitstream.
// First entry (i.e., index 0) specifies the speaker layout for channel 1.
// Subsequent entries specify the speaker layout for the next channels
// (e.g., second entry for channel 2, third entry for channel 3, etc.).
audioChannelMapping = UI8[channelCount] as AudioChannel

// Only the channel count is specified, without any further information
// about the channel order
//
Unspecified = 0,

//
// The native channel order (i.e., the channels are in the same order in
// which as defined in the AudioChannel enum).
//
Native = 1,

//
// The channel order does not correspond to any predefined
// order and is stored as an explicit map.
//
Custom = 2

}

enum AudioChannelMask {
//
// Mask used to indicate which channels are present in the stream.
//

// masks for commonly used speaker configurations
// <https://en.wikipedia.org/wiki/Surround_sound#Standard_speaker_channels>
FrontLeft = 0x000001,
FrontRight = 0x000002,
FrontCenter = 0x000004,
LowFrequency1 = 0x000008,
BackLeft = 0x000010,
BackRight = 0x000020,
FrontLeftCenter = 0x000040,
FrontRightCenter = 0x000080,
BackCenter = 0x000100,
SideLeft = 0x000200,
SideRight = 0x000400,
TopCenter = 0x000800,
TopFrontLeft = 0x001000,
TopFrontCenter = 0x002000,
TopFrontRight = 0x004000,
TopBackLeft = 0x008000,
TopBackCenter = 0x010000,
TopBackRight = 0x020000,

// Completes 22.2 multichannel audio,
// as standardized in SMPTE ST2036-2-2008
// see - <https://en.wikipedia.org/wiki/22.2_surround_sound>
LowFrequency2 = 0x040000,
TopSideLeft = 0x080000,
TopSideRight = 0x100000,
BottomFrontCenter = 0x200000,
BottomFrontLeft = 0x400000,

19

https://en.wikipedia.org/wiki/Surround_sound#Standard_speaker_channels
https://en.wikipedia.org/wiki/22.2_surround_sound

}

if (audioChannelOrder == AudioChannelOrder.Native) {
// audioChannelFlags indicates which channels are present in the
// multi-channel stream. You can perform a Bitwise AND
// (i.e., audioChannelFlags & AudioChannelMask.xxx) to see if a
// specific audio channel is present
audioChannelFlags = UI32

}
}

if (audioPacketType == AudioPacketType.SequenceEnd) {
// signals end of sequence

}

if (audioPacketType == AudioPacketType.SequenceStart) {
if (audioFourCc == AudioFourCc.Aac) {
// The AAC audio specific config (a.k.a., AacSequenceHeader) is
// defined in ISO/IEC 14496-3.
aacHeader = [AacSequenceHeader]

}

if (audioFourCc == AudioFourCc.Flac) {
// FlacSequenceHeader layout is:
//
// The bytes 0x66 0x4C 0x61 0x43 ("fLaC" in ASCII) signature
//
// Followed by a metadata block (called the STREAMINFO block) as described
// in section 7 of the FLAC specification. The STREAMINFO block contains
// information about the whole sequence, such as sample rate, number of
// channels, total number of samples, etc. It MUST be present as the first
// metadata block in the sequence. The FLAC audio specific bitstream format
// is defined at <https://xiph.org/flac/format.html>
flacHeader = [FlacSequenceHeader]

}

if (audioFourCc == AudioFourCc.Opus) {
// Opus Sequence header (a.k.a., ID header):
// - The Opus sequence start is also known as the ID header.
// - It contains essential information needed to initialize
// the decoder and understand the stream format.
// - For detailed structure, refer to RFC 7845, Section 5.1:
// <https://datatracker.ietf.org/doc/html/rfc7845#section-5.1>
//
// If the Opus sequence start payload is empty, use the
// AudioPacketType.MultichannelConfig signal for channel
// mapping when present; otherwise, default to mono/stereo mode.
opusHeader = [OpusSequenceHeader]

}
}

if (audioPacketType == AudioPacketType.CodedFrames) {

BottomFrontRight = 0x800000,
}

enum AudioChannel {
//
// Channel mappings enums
//

// commonly used speaker configurations
// see - <https://en.wikipedia.org/wiki/Surround_sound#Standard_speaker_channels>
FrontLeft = 0, // i.e., FrontLeft is assigned to channel zero
FrontRight,
FrontCenter,
LowFrequency1,
BackLeft,
BackRight,
FrontLeftCenter,
FrontRightCenter,
BackCenter = 8,
SideLeft,
SideRight,
TopCenter,
TopFrontLeft,
TopFrontCenter,
TopFrontRight,
TopBackLeft,
TopBackCenter = 16,
TopBackRight,

// mappings to complete 22.2 multichannel audio, as
// standardized in SMPTE ST2036-2-2008
// see - <https://en.wikipedia.org/wiki/22.2_surround_sound>
LowFrequency2 = 18,
TopSideLeft,
TopSideRight,
BottomFrontCenter,
BottomFrontLeft,
BottomFrontRight,

// Channel is empty and can be safely skipped.
Unused = 0xfe,

// Channel contains data, but its speaker configuration is unknown.
Unknown = 0xff,

}

20

https://xiph.org/flac/format.html
https://datatracker.ietf.org/doc/html/rfc7845#section-5.1
https://en.wikipedia.org/wiki/Surround_sound#Standard_speaker_channels
https://en.wikipedia.org/wiki/22.2_surround_sound

if (audioFourCc == AudioFourCc.Ac3 || audioFourCc == AudioFourCc.Eac3) {
// Body contains audio data as defined by the bitstream syntax
// in the ATSC standard for Digital Audio Compression (AC-3, E-AC-3)
ac3Data = [Ac3CodedData]

}

if (audioFourCc == AudioFourCc.Opus) {
// Body contains Opus packets. The layout is one Opus
// packet for each of N different streams, where N is
// typically one for mono or stereo, but MAY be greater
// than one for multichannel audio. The value N is
// specified in the ID header (Opus sequence start) or
// via the AudioPacketType.MultichannelConfig signal, and
// is fixed over the entire length of the Opus sequence.
// The first (N - 1) Opus packets, if any, are packed one
// after another using the self-delimiting framing from
// Appendix B of [RFC6716]. The remaining Opus packet is
// packed at the end of the Ogg packet using the regular,
// undelimited framing from Section 3 of [RFC6716]. All
// of the Opus packets in a single audio packet MUST be
// constrained to have the same duration.
opusData = [OpusCodedData]

}

if (audioFourCc == AudioFourCc.Mp3) {
// An Mp3 audio stream is built up from a succession of smaller
// parts called frames. Each frame is a data block with its own header
// and audio information
mp3Data = [Mp3CodedData]

}

if (audioFourCc == AudioFourCc.Aac) {
// The AAC audio specific bitstream format is defined in ISO/IEC 14496-3.
aacData = [AacCodedData]

}

if (audioFourCc == AudioFourCc.Flac) {
// The audio data is composed of one or more audio frames. Each frame
// consists of a frame header, which contains a sync code and information
// about the frame, such as the block size, sample rate, number of
// channels, et cetera. The Flac audio specific bitstream format
// is defined at <https://xiph.org/flac/format.html>
flacData = [FlacCodedData]

}
}

if (isAudioMultitrack &&
audioMultitrackType != AvMultitrackType.OneTrack &&
positionDataPtrToNextAudioTrack(sizeOfAudioTrack)) {
// positionDataPtrToNextAudioTrack() is for developer to write
continue

}

21

https://xiph.org/flac/format.html

// done processing audio message
break

}

Enhanced Video
The VideoTagHeader has been extended to define additional video codecs, multitrack capabilities, signaling support, and additional
miscellaneous enhancements, while ensuring backward compatibility. This extension is termed the ExVideoTagHeader and is designed to be
future-proof, allowing for the definition of additional video codecs, features, and corresponding signaling.

During the parsing process, the logic MUST handle unexpected or unknown elements gracefully. Specifically, if any critical signaling or
flags (e.g., VideoFrameType, VideoPacketType, or VideoFourCc) are not recognized, the system MUST fail in a controlled and predictable
manner.
^^>
Important: A single video message for a unique timestamp may include a batch of VideoPacketType values (e.g., multiple TrackId values,
Metadata values). When parsing a video message, the bitstream MUST be processed completely to ensure all payload data has been handled.
^^>
Table: Extended VideoTagHeader

Description Of Bitstream Enumerated Types

// Check if isExVideoHeader flag is set to 1, signaling E-RTMP
// video mode. In this case, VideoCodecId's 4-bit unsigned binary (UB[4])
// should not be interpreted as a codec identifier. Instead, these
// UB[4] bits should be interpreted as VideoPacketType.
isExVideoHeader = UB[1]
videoFrameType = UB[3] as VideoFrameType

if (isExVideoHeader == 0) {
// Utilize the VideoCodecId values and the bitstream description
// as defined in the legacy [FLV] specification. Refer to this
// version for the proper implementation details.
videoCodecId = UB[4] as VideoCodecId

if (videoFrameType == VideoFrameType.Command) {
videoCommand = UI8 as VideoCommand

}
}

enum VideoFrameType {
// 0 - reserved
KeyFrame = 1, // a seekable frame
InterFrame = 2, // a non - seekable frame
DisposableInterFrame = 3, // H.263 only
GeneratedKeyFrame = 4, // reserved for server use only

// If videoFrameType is not ignored and is set to VideoFrameType.Command,
// the payload will not contain video data. Instead, (Ex)VideoTagHeader
// will be followed by a UI8, representing the following meanings:
//
// 0 = Start of client-side seeking video frame sequence
// 1 = End of client-side seeking video frame sequence
//
// frameType is ignored if videoPacketType is VideoPacketType.MetaData
Command = 5, // video info / command frame

// 6 = reserved
// 7 = reserved

}

enum VideoCommand {
StartSeek = 0,
EndSeek = 1,

22

https://docs.google.com/document/d/1aY1bF3RI_TKgd-VpTEUzuWK9FEoS9i0lyXitcF_xavo/edit#heading=h.jpwhvwronaz9

// 0x03 = reserved
// ...
// 0xff = reserved

}

enum VideoCodecId {
// These values remain as they were in the legacy [FLV] specification.
// If the IsExVideoHeader flag is set, we switch into
// FOURCC video mode defined in the VideoFourCc enumeration.
// This means that VideoCodecId (UB[4] bits) is not interpreted
// as a codec identifier. Instead, these UB[4] bits are
// interpreted as VideoPacketType.

// 0 - Reserved
// 1 - Reserved
SorensonH263 = 2,
Screen = 3,
On2VP6 = 4,
On2VP6A = 5, // with alpha channel
ScreenV2 = 6,
Avc = 7,
// 8 - Reserved
// ...
// 15 - Reserved

}

ExVideoTagHeader Section
note: ExVideoTagHeader is present if IsExVideoHeader flag is set.

Description Of Bitstream Enumerated Types

//
// process ExVideoTagHeader
//
processVideoBody = false
if (isExVideoHeader == 1) {
processVideoBody = true

// The UB[4] bits are interpreted as VideoPacketType
// instead of VideoCodecId
videoPacketType = UB[4] as VideoPacketType

if (videoPacketType != VideoPacketType.Metadata &&
videoFrameType == VideoFrameType.Command) {
videoCommand = UI8 as VideoCommand

// ExVideoTagBody has no payload if we got here.
// Set boolean to not try to process the video body.
processVideoBody = false

} else if (videoPacketType == VideoPacketType.Multitrack) {
isVideoMultitrack = true;
videoMultitrackType = UB[4] as AvMultitrackType

// Fetch VideoPacketType for all video tracks in the video message.

enum VideoPacketType {
SequenceStart = 0,
CodedFrames = 1,
SequenceEnd = 2,

// CompositionTime Offset is implicitly set to zero. This optimization
// avoids transmitting an SI24 composition time value of zero over the wire.
// See the ExVideoTagBody section below for corresponding pseudocode.
CodedFramesX = 3,

// ExVideoTagBody does not contain video data. Instead, it contains
// an AMF-encoded metadata. Refer to the Metadata Frame section for
// an illustration of its usage. For example, the metadata might include
// HDR information. This also enables future possibilities for expressing
// additional metadata meant for subsequent video sequences.
//
// If VideoPacketType.Metadata is present, the FrameType flags
// at the top of this table should be ignored.
Metadata = 4,

// Carriage of bitstream in MPEG-2 TS format
//
// PacketTypeSequenceStart and PacketTypeMPEG2TSSequenceStart

23

https://docs.google.com/document/d/1aY1bF3RI_TKgd-VpTEUzuWK9FEoS9i0lyXitcF_xavo/edit#heading=h.jpwhvwronaz9

// This fetch MUST not result in a VideoPacketType.Multitrack
videoPacketType = UB[4] as VideoPacketType

if (videoMultitrackType != AvMultitrackType.ManyTracksManyCodecs) {
// The tracks are encoded with the same codec. Fetch the FOURCC for them
videoFourCc = FOURCC as VideoFourCc

}
} else {
videoFourCc = FOURCC as VideoFourCc

}
}

// are mutually exclusive
MPEG2TSSequenceStart = 5,

// Turns on video multitrack mode
Multitrack = 6,

// 7 - Reserved
// ...
// 14 - reserved
// 15 - reserved

}

enum VideoFourCc {
//
// Valid FOURCC values for signaling support of video codecs
// in the enhanced FourCC pipeline. In this context, support
// for a FourCC codec MUST be signaled via the enhanced
// "connect" command.
//

Vp8 = makeFourCc("vp08"),
Vp9 = makeFourCc("vp09"),
Av1 = makeFourCc("av01"),
Avc = makeFourCc("avc1"),
Hevc = makeFourCc("hvc1"),

}

enum AvMultitrackType {
//
// Used by audio and video pipeline
//

OneTrack = 0,
ManyTracks = 1,
ManyTracksManyCodecs = 2,

// 3 - Reserved
// ...
// 15 - Reserved

}

ExVideoTagBody Section
Note: This ExVideoTagBody format is signaled by the presence of ExVideoTagHeader and if videoCommand has not been set (see VideoFrameType description)

Description Of Bitstream

//
// process ExVideoTagBody
//
while (processVideoBody) {
if (isVideoMultitrack) {
if (videoMultitrackType == AvMultitrackType.ManyTracksManyCodecs) {
// Each track has a codec assigned to it. Fetch the FOURCC for the next track.
videoFourCc = FOURCC as VideoFourCc

24

https://docs.google.com/document/d/1aY1bF3RI_TKgd-VpTEUzuWK9FEoS9i0lyXitcF_xavo/edit#bookmark=kix.t5eqxeh83xrg

}

// Track Ordering:
//
// For identifying the highest priority (a.k.a., default track)
// or highest quality track, it is RECOMMENDED to use trackId
// set to zero. For tracks of lesser priority or quality, use
// multiple instances of trackId with ascending numerical values.
// The concept of priority or quality can have multiple
// interpretations, including but not limited to bitrate,
// resolution, default angle, and language. This recommendation
// serves as a guideline intended to standardize track numbering
// across various applications.
videoTrackId = UI8

if (videoMultitrackType != AvMultitrackType.OneTrack) {
// The `sizeOfVideoTrack` specifies the size in bytes of the
// current track that is being processed. This size starts
// counting immediately after the position where the `sizeOfVideoTrack`
// value is located. You can use this value as an offset to locate the
// next video track in a multitrack system. The data pointer is
// positioned immediately after this field. Depending on the MultiTrack
// type, the offset points to either a `fourCc` or a `trackId.`
sizeOfVideoTrack = UI24

}
}

if (videoPacketType == VideoPacketType.Metadata) {
// The body does not contain video data; instead, it consists of AMF-encoded
// metadata. The metadata is represented by a series of [name, value] pairs.
// Currently, the only defined [name, value] pair is ["colorInfo", Object].
// See the Metadata Frame section for more details on this object.
//
// For a deeper understanding of the encoding, please refer to the descriptions
// of SCRIPTDATA and SCRIPTDATAVALUE in the [FLV] file specification.
videoMetadata = [VideoMetadata]

}

if (videoPacketType == VideoPacketType.SequenceEnd) {
// signals end of sequence

}

if (videoPacketType == VideoPacketType.SequenceStart) {
if (videoFourCc == VideoFourCc.Vp8) {
// body contains a VP8 configuration record to start the sequence
vp8Header = [VPCodecConfigurationRecord]

}

if (videoFourCc == VideoFourCc.Vp9) {
// body contains a VP9 configuration record to start the sequence
vp9Header = [VPCodecConfigurationRecord]

}

25

https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=80
https://www.webmproject.org/vp9/mp4/#vp-codec-configuration-box
https://www.webmproject.org/vp9/mp4/#vp-codec-configuration-box

if (videoFourCc == VideoFourCc.Av1) {
// body contains a configuration record to start the sequence
av1Header = [AV1CodecConfigurationRecord]

}

if (videoFourCc == VideoFourCc.Avc) {
// body contains a configuration record to start the sequence. See ISO/IEC
// 14496-15, 5.2.4.1 for the description of AVCDecoderConfigurationRecord
avcHeader = [AVCDecoderConfigurationRecord]

}

if (videoFourCc == VideoFourCc.Hevc) {
// body contains a configuration record to start the sequence. See ISO/IEC
// 14496-15, 8.3.3.1.2 for the description of HEVCDecoderConfigurationRecord
hevcHeader = [HEVCDecoderConfigurationRecord]

}
}

if (videoPacketType == VideoPacketType.MPEG2TSSequenceStart) {
if (videoFourCc == VideoFourCc.Av1) {
// body contains a video descriptor to start the sequence
av1Header = [AV1VideoDescriptor]

}
}

if (videoPacketType == VideoPacketType.CodedFrames) {
if (videoFourCc == VideoFourCc.Vp8) {
// body contains series of coded full frames
vp8CodedData = [Vp8CodedData]

}

if (videoFourCc == VideoFourCc.Vp9) {
// body contains series of coded full frames
vp9CodedData = [Vp9CodedData]

}

if (videoFourCc == VideoFourCc.Av1) {
// body contains one or more OBUs which represent a single temporal unit
av1CodedData = [Av1CodedData]

}

if (videoFourCc == VideoFourCc.Avc) {
// See ISO/IEC 14496-12, 8.15.3 for an explanation of composition times.
// The offset in an FLV file is always in milliseconds.
compositionTimeOffset = SI24

// Body contains one or more NALUs; full frames are required
avcCodedData = [AvcCodedData]

}

if (videoFourCc == VideoFourCc.Hevc) {

26

https://aomediacodec.github.io/av1-isobmff/#av1codecconfigurationbox-section
https://aomediacodec.github.io/av1-mpeg2-ts/#av1-video-descriptor

// See ISO/IEC 14496-12, 8.15.3 for an explanation of composition times.
// The offset in an FLV file is always in milliseconds.
compositionTimeOffset = SI24

// Body contains one or more NALUs; full frames are required
hevcData = [HevcCodedData]

}
}

if (VideoPacketType.CodedFramesX) {
// compositionTimeOffset is implied to equal zero. This is
// an optimization to save putting SI24 value on the wire

if (videoFourCc == VideoFourCc.Avc) {
// Body contains one or more NALUs; full frames are required
avcCodedData = [AvcCodedData]

}

if (videoFourCc == VideoFourCc.Hevc) {
// Body contains one or more NALUs; full frames are required
hevcData = [HevcCodedData]

}
}

if (isVideoMultitrack &&
videoMultitrackType != AvMultitrackType.OneTrack &&
positionDataPtrToNextVideoTrack(sizeOfVideoTrack)) {
// positionDataPtrToNextVideoTrack() is for developer to write
continue

}

// done processing video message
break

}

Metadata Frame
To support various types of video metadata, the legacy [FLV] specification has been enhanced. The VideoTagHeader has been extended to define
a new VideoPacketType.Metadata (see ExVideoTagHeader table in Enhanced Video section) whose payload will contain an AMF-encoded metadata.
The metadata will be represented by a series of [name, value] pairs. For now the only defined [name, value] pair is ["colorInfo", Object].
When leveraging VideoPacketType.Metadata to deliver HDR metadata, the metadata MUST be sent prior to the video sequence, scene, frame or
such that it affects. Each time a new colorInfo object is received it invalidates and replaces the current one. To reset to the original
color state you can send colorInfo with a value of Undefined (the RECOMMENDED approach) or an empty object (i.e., {}).

It is intentional to leverage a video message to deliver VideoPacketType.Metadata instead of other [RTMP] Message types. One benefit of
leveraging a video message is to avoid any racing conditions between video messages and other RTMP message types. Given this, once your

27

colorInfo object is parsed, the read values MUST be processed in time to affect the first frame of the video section which follows the
colorInfo object.

The colorInfo object provides HDR metadata to enable a higher quality image source conforming to BT.2020 (a.k.a., Rec. 2020) standard. The
properties of the colorInfo object, which are encoded in an AMF message format, are defined below.
^^>
Note:

● For content creators: Whenever it behooves to add video hint information via metadata (e.g., HDR) to the FLV container it is
RECOMMENDED to add it via VideoPacketType.Metadata. This may be done in addition (or instead) to encoding the metadata directly into
the codec bitstream.

● The object encoding format (i.e., AMF0 or AMF3) is signaled during the connect command.
^^>
```js
type ColorInfo = {
colorConfig: {
// number of bits used to record the color channels for each pixel
bitDepth: number, // SHOULD be 8, 10 or 12

//
// colorPrimaries, transferCharacteristics and matrixCoefficients are defined
// in ISO/IEC 23091-4/ITU-T H.273. The values are an index into
// respective tables which are described in "Colour primaries",
// "Transfer characteristics" and "Matrix coefficients" sections.
// It is RECOMMENDED to provide these values.
//

// indicates the chromaticity coordinates of the source color primaries
colorPrimaries: number, // enumeration [0-255]

// opto-electronic transfer characteristic function (e.g., PQ, HLG)
transferCharacteristics: number, // enumeration [0-255]

// matrix coefficients used in deriving luma and chroma signals
matrixCoefficients: number, // enumeration [0-255]

},

hdrCll: {
//
// maximum value of the frame average light level
// (in 1 cd/m2) of the entire playback sequence
//
maxFall: number, // [0.0001-10000]

//
// maximum light level of any single pixel (in 1 cd/m2)
// of the entire playback sequence
//
maxCLL: number, // [0.0001-10000]

},

28

https://veovera.github.io/enhanced-rtmp/original-rtmp-related-specs/rtmp-v1-0-spec.pdf#page=29


//
// The hdrMdcv object defines mastering display (i.e., where
// creative work is done during the mastering process) color volume (a.k.a., mdcv)
// metadata which describes primaries, white point and min/max luminance. The
// hdrMdcv object SHOULD be provided.
//
// Specification of the metadata along with its ranges adhere to the
// ST 2086:2018 - SMPTE Standard (except for minLuminance see
// comments below)
//
hdrMdcv: {
//
// Mastering display color volume (mdcv) xy Chromaticity Coordinates within CIE
// 1931 color space.
//
// Values SHALL be specified with four decimal places. The x coordinate SHALL
// be in the range [0.0001, 0.7400]. The y coordinate SHALL be
// in the range [0.0001, 0.8400].
//
redX: number,
redY: number,
greenX: number,
greenY: number,
blueX: number,
blueY: number,
whitePointX: number,
whitePointY: number,

//
// max/min display luminance of the mastering display (in 1 cd/m2 ie. nits)
//
// note: ST 2086:2018 - SMPTE Standard specifies minimum display mastering
// luminance in multiples of 0.0001 cd/m2.
//
// For consistency we specify all values
// in 1 cd/m2. Given that a hypothetical perfect screen has a peak brightness
// of 10,000 nits and a black level of .0005 nits we do not need to
// switch units to 0.0001 cd/m2 to increase resolution on the lower end of the
// minLuminance property. The ranges (in nits) mentioned below suffice
// the theoretical limit for Mastering Reference Displays and adhere to the
// SMPTE ST 2084 standard (a.k.a., PQ) which is capable of representing full gamut
// of luminance level.
//
maxLuminance: number, // [5-10000]
minLuminance: number, // [0.0001-5]

},
}
```
Table: Flag values for the videoFunction property

Function Flag Usage Value

29

SUPPORT_VID_CLIENT_SEEK Indicates that the client can perform frame-accurate seeks. 0x0001

SUPPORT_VID_CLIENT_HDR Indicates that the client has support for HDR video. Note: Implies
support for colorInfo Object within VideoPacketType.Metadata. 0x0002

SUPPORT_VID_CLIENT_VIDEO_PACKET_TYPE_METADATA Indicates that the client has support for VideoPacketType.Metadata.
See Metadata Frame section for more detail.

0x0004

SUPPORT_VID_CLIENT_LARGE_SCALE_TILE The large-scale tile allows the decoder to extract only an
interesting section in a frame without the need to decompress the
entire frame. Support for this feature is not required and is
assumed to not be implemented by the client unless this property is
present and set to true.

0x0008

Multitrack Streaming via Enhanced RTMP
E-RTMP has introduced support for multitrack streaming, offering increased flexibility in audio and video streaming through the use of a
track index (a.k.a., trackId). This feature allows for the serialization of multiple tracks over a single [RTMP] connection and stream
channel.

It's important to note that multitrack support is designed to augment, not replace, the option of using multiple streams for streaming.
While both multiple streams and multitrack can potentially address the same use cases, the choice between them will depend on the specific
capabilities of your RTMP implementation and requirements. In certain cases, multitrack may not be the most efficient option.

Sample Multitrack Use Cases
● Adaptive Bitrate Streaming: Multitrack support allows the client to send Adaptive Bitrate (ABR) ladders, thus avoiding the need for

server-side transcoding and reducing quality loss. This also facilitates sending content with multiple codecs like AV1, HEVC, and VP9.
● Device Specific Streaming: The feature allows for the streaming of different aspect ratios, tailored for various device profiles,

enabling more dynamic and flexible presentations.
● Frame-Level Synchronization: For example, you can synchronize multiple camera views in a concert.
● Multi-Language Support: Support for multiple audio tracks in a single [FLV] file is now available, eliminating the need for multiple

file versions.

Additional Multitrack Details
● Video Messages: Each video message MUST include a trackId (refer to the videoPacketType.Multitrack entry in the ExVideoTagHeader table

within the Enhanced Video section for video bitstream signaling) as it is not persistent across messages.
● Audio Messages: Similarly, each audio message MUST include a trackId (refer to the AudioPacketType.Multitrack in the ExAudioTagHeader

table within the Enhanced Audio section for audio bitstream signaling).
● Payload Parsing: All tracks within a single timestamp MUST be processed to ensure comprehensive media handling.

30

● Track Ordering: For identifying the highest priority (a.k.a., default track) or highest quality track, it is RECOMMENDED to use trackId
set to zero. For tracks of lesser priority or quality, use multiple instances of trackId with ascending numerical values. The concept
of priority or quality can have multiple interpretations, including but not limited to bitrate, resolution, default angle, and
language. This recommendation serves as a guideline intended to standardize track numbering across various applications.

General Guidelines
Multitrack capabilities in E-RTMP offer a wide range of possibilities, from adaptive bitrate streaming to multi-language support. While this
document doesn't prescribe specific encoding rules or manifest metadata, it aims to guide you through the complexities of leveraging
multitrack features. Consider various parameters like codecs, frame rates, key frames, sampling rates, and resolutions to meet your unique
objectives. Remember, media encoding settings are separate from E-RTMP configurations.

Enhancing NetConnection connect Command
When a client connects to an E-RTMP server, it sends a connect command to the server. The command structure sent from the client to the
server contains a Command Object, comprising name-value pairs. This is where the client indicates the audio and video codecs it supports. To
declare support for newly defined codecs or other enhancements supported by the client, this name-value pair list must be extended. Below is
the description of a new name-value pair used in the Command Object of the connect command.

Table: New name-value pair that can be set in the Command Object
Property Type Description Example Value

fourCcList Strict Array of strings Used to declare the enhanced list of supported codecs when
connecting to the server. The fourCcList property is a strict array
of dense ordinal indices. Each entry in the array is of string
type, specifically a [FourCC] value (i.e., a string that is a
sequence of four bytes), representing a supported audio/video
codec.

In the context of E-RTMP, clients capable of receiving any codec
(e.g., recorders or forwarders) may set a FourCC value to the
wildcard value of "*".

Note: The fourCcList property was introduced in the original
E-RTMP. Going forward, it is RECOMMENDED on the client side to
switch to using the [audio|video]FourCcInfoMap properties described
below. On the server side, we RECOMMEND supporting both fourCcList
and [audio|video]FourCcInfoMap properties to handle cases where a
client has not yet transitioned to using the new properties.

e.g., 1
[
"av01", "vp09", "vp08", "Hvc1",
"Avc1", "ac-3", "ec-3", "Opus",
".mp3", "fLaC", "Aac"

]

e.g., 2
["*"]

videoFourCcInfoMap,
audioFourCcInfoMap

Object The [audio|video]FourCcInfoMap property is designed to enable
setting capability flags for each supported codec in the context of
E-RTMP streaming. A FourCC key is a four-character code used to
specify a video or audio codec. The names of the object properties
are strings that correspond to these FourCC keys. Each object

e.g., 1
videoFourCcInfoMap = {
// can forward any video codec
"*": FourCcInfoMask.CanForward,

31

https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=29

property holds a numeric value that represents a set of capability
flags. These flags can be combined using a Bitwise OR operation.

Refer to the enum FourCcInfoMask for the available flags:

enum FourCcInfoMask {
CanDecode = 0x01,
CanEncode = 0x02,
CanForward = 0x04,

}

Capability flags define specific functionalities, such as the
ability to decode, encode, or forward.

A FourCC key set to the wildcard character "*" acts as a catch-all
for any codec. When this wildcard key exists, it overrides the
flags set on properties for specific codecs. For example, if the
flag for the "*" property is set to FourCcInfoMask.CanForward, all
codecs will be forwarded regardless of individual flags set on
their specific properties.

// can decode, encode, forward (see "*") VP9 codec
"vp09": FourCcInfoMask.CanDecode |

FourCcInfoMask.CanEncode,
}

e.g., 2
audioFourCcInfoMap = {
// can forward any audio codec
"*": FourCcInfoMask.CanForward,

// can decode, encode, forward (see "*") Opus codec
"Opus": FourCcInfoMask.CanDecode |

FourCcInfoMask.CanEncode,
}

capsEx number The value represents capability flags which can be combined via a
Bitwise OR to indicate which extended set of capabilities (i.e.,
beyond the legacy [RTMP] specification) are supported via E-RTMP.
See enum CapsExMask for the enumerated values representing the
assigned bits. If the extended capabilities are expressed elsewhere
they will not appear here (e.g., FourCC, HDR or
VideoPacketType.Metadata support is not expressed in this
property).

enum CapsExMask {
Reconnect = 0x01 // See reconnect section
Multitrack = 0x02, // See multitrack section

}

CapsExMask.Reconnect | CapsExMask.Multitrack

As you can see, the client declares to the server what enhancements it supports. The server responds with a command, either _result or
_error, to indicate whether the response is a result or an error. During the response, the server provides some properties within an Object
as one of the parameters. This is where the server needs to state its support for E-RTMP. The server SHOULD state its support via attributes
such as videoFourCcInfoMap, capsEx, and similar properties.

Action Message Format (AMF): AMF0 and AMF3
Action Message Format (AMF) is a compact binary format used to serialize SCRIPTDATA. It has two specifications: [AMF0] and [AMF3]. AMF3
improves on AMF0 by optimizing the payload size on the wire. To understand the full scope of these optimizations, please refer to the AMF0
and AMF3 specifications.

32

https://docs.google.com/document/d/1aY1bF3RI_TKgd-VpTEUzuWK9FEoS9i0lyXitcF_xavo/edit#heading=h.1lpzlf9n7x6l
https://docs.google.com/document/d/1aY1bF3RI_TKgd-VpTEUzuWK9FEoS9i0lyXitcF_xavo/edit#heading=h.iq4rryccgnko
https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf#page=80

Supporting AMF3 in the [RTMP] and [FLV] is beneficial due to its optimization over AMF0. Understanding the ecosystem is crucial before
adding AMF3 support to RTMP or FLV.

Enabling AMF3 in RTMP
To enable support for AMF3 in RTMP, the following steps are REQUIRED:

● Adding support for Data Message, Shared Object Message and Command Message and their associated AMF3 message types (i.e., 15, 16 and
17).

● Adding support for the AMF3 set of possible type markers (see AMF3 specification section 3.1).
● Signaling in the connect command that the AMF3 encoding format is supported in addition to AMF0.

RTMP has had AMF3 as part of its specification for some time now. During the handshake, the client declares whether it has support for AMF3.

Enabling AMF3 in FLV
Prior to Y2023, the FLV file format did not have AMF3 as part of its SCRIPTDATA specification. To ensure support for AMF3 in FLV:

● Add a new FLV TagType 15 (i.e., in addition to TagType 18), which supports SCRIPTDATA encoded via AMF3 (i.e., similar to the way Data
Message is handled).

Important AMF3-encoded Historical Specification Clarification
Established, pre E-RTMP, specifications state the following:

● Command Messages carry the AMF-encoded commands between the client and the server. Message type values:
○ 20 for AMF0 encoding.
○ 17 for AMF3 encoding.

● Data Messages are sent by the client or server to send Metadata or user data to the peer, including details such as creation time,
duration, theme, etc. Message type values:

○ 18 for AMF0 encoding.
○ 15 for AMF3 encoding.

● The message types 19 for AMF0 and 16 for AMF3 are reserved for Shared Object events.
● AMF0 was extended to allow an AMF0 encoding context to be switched to AMF3. A new type marker, avmplus-object-marker (byte 0x11), was

added. The presence of this marker signifies that the following value is encoded in AMF3. Legacy AMF0 systems that haven't been updated
to support AMF3 should throw an unknown type error.

Unfortunately, the above is incomplete and may be somewhat unclear. To clarify, in addition to the above:

33

https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=24
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=24
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=24
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=24
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=24
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=24
https://veovera.github.io/enhanced-rtmp/docs/legacy/amf3-file-format-spec.pdf#page=5
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf#page=29
https://veovera.github.io/enhanced-rtmp/docs/legacy/amf0-file-format-spec.pdf#page=8

● Object Encoding property in the Command Object of the connect command indicates the type of serialization (a.k.a., encoding) supported
by the client or server:

○ A value of 0 (default and optional) indicates support for AMF0 encoding and message types of 18, 19 and 20.
○ A value of 3 indicates support for both AMF0 and AMF3 encoding and message types of (18, 15), (19, 16) and (20, 17).

● Message payload for message types of 15, 16 and 17 starts with a format selector byte. Currently, only format 0 is defined to indicate
AMF0-encoded values. It's possible to signal a switch to AMF3 serialization by prefixing an AMF3 value with an AMF0
avmplus-object-marker (byte 0x11). The switch isn't sticky, and parsing MUST return to AMF0 encoding mode once the AMF3 value is
serialized. This means that every AMF3 encoded value MUST be prefixed with an avmplus-object-marker (byte 0x11) as defined in AMF0.

Protocol Versioning
There is no need for a version bump within E-RTMP for either the [RTMP] handshake sequence or the FLV header file version field. All of the
enhancements are triggered via the newly defined additions to the bitstream format which don’t break legacy implementations. E-RTMP is self
describing in its capabilities.

References

[AMF0]
Adobe Systems Inc. "Action Message Format – AMF 0", June 2006,
<https://veovera.github.io/enhanced-rtmp/docs/legacy/amf0-file-format-spec.pdf>.

[AMF3]
Adobe Systems Inc. "Action Message Format – AMF 3", June 2006,
<https://veovera.github.io/enhanced-rtmp/docs/legacy/amf3-file-format-spec.pdf>.

[DEPRECATED]
Deprecation,
<https://en.wikipedia.org/wiki/Deprecation>.

[FLV]
"Adobe Flash Video File Format Specification, Version 10.1", August 2010,
<https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf>.

34

https://veovera.github.io/enhanced-rtmp/docs/legacy/amf0-file-format-spec.pdf
https://veovera.github.io/enhanced-rtmp/docs/legacy/amf3-file-format-spec.pdf
https://en.wikipedia.org/wiki/Deprecation
https://veovera.github.io/enhanced-rtmp/docs/legacy/video-file-format-v10-1-spec.pdf

[FourCC]
FourCC,
<https://en.wikipedia.org/wiki/FourCC>.

[LEGACY]
Legacy specifications for the RTMP solution,
<https://veovera.github.io/enhanced-rtmp/docs/legacy/>.

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.

[RFC8174]
Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017,
<https://www.rfc-editor.org/info/rfc8174>.

[RTMP]
Parmar, H., Ed. and M. Thornburgh, Ed., "Adobe’s Real Time Messaging Protocol", December 2012,
<https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf>.

[WebCodecs]
W3C, "WebCodecs"
<https://www.w3.org/TR/webcodecs/>.

35

https://en.wikipedia.org/wiki/FourCC
https://veovera.github.io/enhanced-rtmp/docs/legacy/
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://veovera.github.io/enhanced-rtmp/docs/legacy/rtmp-v1-0-spec.pdf
https://www.w3.org/TR/webcodecs/

Appendix

Document Revision History and Guidelines
The revision history section of this document is maintained to provide a clear and concise record of significant changes throughout its
development phases, such as alpha, beta, and release. Here are the key points regarding how we manage this history:

● Phase-Based Documentation: Important changes made during each phase (alpha, beta, release) are documented in the revision history to
keep readers informed of significant developments.

● Transition Between Phases: When transitioning from one phase to another (e.g., from alpha to beta), we clear the document revision
history. This practice helps keep the document uncluttered and focused on the relevant phase.

● Exclusion of Minor Changes: Minor changes that are purely for wording clarification and do not involve adding new features or fixing
bugs may be excluded from the revision history. Developers should prioritize ignoring formatting diffs when reviewing changes, as these
do not affect logic or introduce new features. Focusing on substantive updates ensures efficient review and clear understanding of
impactful modifications.

● Commit History in GitHub: The document and its revision history are maintained in GitHub repository at
<https://github.com/veovera/enhanced-rtmp>. Although the document revision history is cleared periodically, all commits and their
messages are preserved in GitHub, ensuring a comprehensive record of all changes made.

● Version Changes: When the version of the specification changes significantly (e.g., from v1 to v2), we again clear the revision
history. Despite this, the full history of commits and their messages remains accessible in GitHub.

These guidelines ensure that the revision history in the specification document remains focused, relevant, and easy to navigate, while the
complete history of all changes is securely stored and accessible in GitHub.

Table: Revision history
Document Revision History

Date Comments

v2-2024-03-16-a1 1. The Enhanced RTMP Version 2 Alpha is now ready for public testing.

v2-2024-04-02-a1 1. Fixed pseudocode logic relating to VP8 sequence start and coded data.

v2-2024-04-22-a1 1. Minor cleanup of normative reference moniker. No changes to logic.

v2-2024-05-9-a1
1. Added audio sections to Enhanced RTMP Version 2 Alpha.
2. Added WebCodecs reference.

v2-2024-05-23-a1

1. Defined the format and behavior of the audio silence message
2. Defined the meaning of AudioPacketType.SequenceEnd
3. Cleaned up the definition for the expected Opus sequence start message
4. Defined the format of the Opus Coded Data on the wire
5. Cleaned up the definition for the expected FLAC sequence start message, it was

missing a fLaC marker.

36

https://github.com/veovera/enhanced-rtmp

v2-2024-05-24-a1 1. Fixed a bug in pseudocode when parsing FLAC sequence header.

v2-2024-05-28-a1 1. Reworded "audio silence" message format for more clarity.

v2-2024-05-29-a1 1. Changed page layout to better support .pdf export. No actual spec changes.

v2-...-a* 1. See GitHub for revision history.

37

