Enhancing RTMP, FLV

Author: Slavik Lozben (Veovera)

Contributors: Google, Jean-Baptiste Kempf (FFmpeg, VideoLAN), pkv (0BS), Dennis
Sadtler (0BS), Xavier Hallade (Intel Corporation), Luxoft, Splitmedialabs Limited
(XSplit), Craig Barberich (VS0), Chris Hock (Adobe), Michael Thornburgh

Status: v1-2024-02-29-r1

Document Revision History

Date Comments
v1-2023-03-23-b1 1. Initial beta submission for enhanced-RTMP
v1-2023-03-27-b1 1. Set IskExHeader = false in the else clause.
V1-2023-04-04-b1 1. Updated the contributors list

1. Added more nuanced clarification in the Metadata Frame section. We now

HDR metadata.

2. Added Michael Thornburgh as a contributor

3. Added the following note in the spec: PacketTypeSequenceStart and
PacketTypeMPEG2TSSequenceStart are mutually exclusive

V1-2023-06-07-b1

current colorInfo object

1. Added onMetaDada section. videocodecid property has been enhanced to

V1-2023-687-25-b1 support FOURCC

2. Switched to using date + “beta” moniker for versioning
V1-2023-07-31-r1 1. Approved

1. Added more detailed information about Protocol and Document versioning
V1-2024-02-29-r1

2. Cleaned up minor issues with document formatting

Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in BCP_14 [RFC2119] [REC8174] when,
and only when, they appear in all capitals, as shown here. Definitions below are
pasted from [REC 2119].

e MUST - This word, or the terms "REQUIRED" or "SHALL", means that the
definition is an absolute requirement of the specification.

e MUST NOT - This phrase, or the phrase "SHALL NOT", means that the definition
is an absolute prohibition of the specification.

provide more information about the timings for when to deliver and process

4. In the Metadata Frame section added a description on how to clear out the

https://github.com/veovera/enhanced-rtmp
https://docs.google.com/document/d/1azWElLwr-vUwM-TdiAJSsLUOMnUkKiidbnlo9PmL4Ok/edit#heading=h.liwlxbd9ovad
https://docs.google.com/document/d/1azWElLwr-vUwM-TdiAJSsLUOMnUkKiidbnlo9PmL4Ok/edit#heading=h.liwlxbd9ovad
https://www.rfc-editor.org/bcp/bcp14
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174
https://datatracker.ietf.org/doc/html/rfc2119

SHOULD - This word, or the adjective "RECOMMENDED", means that there may
exist valid reasons in particular circumstances to ignore a particular item,
but the full implications must be understood and carefully weighed before
choosing a different course.

SHOULD NOT - This phrase, or the phrase "NOT RECOMMENDED", means that there
may exist valid reasons in particular circumstances when the particular
behavior is acceptable or even useful, but the full implications should be
understood and the case carefully weighed before implementing any behavior
described with this label.

MAY - This word, or the adjective "OPTIONAL", means that an item is truly
optional. One vendor may choose to include the item because a particular
marketplace requires it or because the vendor feels that it enhances the
product while another vendor may omit the same item. An implementation which
does not include a particular option MUST be prepared to interoperate with
another implementation which does include the option, though perhaps with
reduced functionality. In the same vein an implementation which does include
a particular option MUST be prepared to interoperate with another
implementation which does not include the option (except, of course, for the
feature the option provides.)

Additionally we add the key word DEPRECATED to the set of key words above. We use
the Wikipedia description for the key word.

DEPRECATED - This word means a discouragement of use of some terminology,
feature, design, or practice, typically because it has been superseded or is
no longer considered efficient or safe, without completely removing it or
prohibiting its use. Typically, deprecated materials are not completely
removed to ensure legacy compatibility or back-up practice in case new
methods are not functional in an odd scenario. It can also imply that a
feature, design, or practice will be removed or discontinued entirely in the
future.

Abstract

There are ongoing requests from the media streaming industry to enhance the
RTMP/FLV solution by bringing the protocol up to date with the current state of
the art streaming technologies. RTMP was released over 20 years ago (The first
public release of RTMP was in 2002). Many streaming solutions use RTMP in their
stack today. While RTMP has remained popular it has gone a bit stale in its
evolution. As an example RTMP/FLV does not have support for popular video codecs
like VP9, HEVC, AV1. This document outlines enhancements to the RTMP/FLV
specification to help bring this protocol inline with the current streaming media

https://en.wikipedia.org/wiki/Deprecation

technologies by adding new capabilities to it. The new capabilities are outlined
here in this spec. The additional capabilities added to this enhancement spec for
the RTMP solution are:

e New video codec types:

Additional Video Codecs Notes
HEVC (H.265) Popular within streaming hardware and software
VP9 solutions.
e Gaining popularity
AV1 e Codec agnostic services are asking for AV1
support

e HDR capability - To support new video codecs and the current range of
displays
e PacketTypeMetadata - to support various types of video metadata

Introduction

This document describes enhancements to the RTMP spec by adding support for
additional media codecs and HDR capability. One of the key goals is to ensure
that this enhancement does not define any breaking changes to legacy clients and
the content that they stream. This means that legacy RTMP/FLV specifications and
documentations continue to stay valid and important to the RTMP ecosystem. This
enhancement specification tries to limit duplication of information from legacy
specifications. Legacy specification plus this documentation here form one
holistic information for the RTMP solution. Some of the legacy informative
references that have been leveraged are:

e Adobe RTMP Specification
e Adobe Flash Video File Format Specification Version 10.1

e Additional Useful Reading

The Enhancement Spec Usage License
Copyright [2022] [Veovera Software Organization]

e This document is licensed under the Apache License, Version 2.0 (the
"License");

e You may not use this document except in compliance with the License.

e You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

https://rtmp.veriskope.com/pdf/rtmp_specification_1.0.pdf
https://rtmp.veriskope.com/pdf/video_file_format_spec_v10_1.pdf
https://rtmp.veriskope.com/docs/
http://www.apache.org/licenses/LICENSE-2.0

e Unless required by applicable law or agreed to in writing, the specification
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations
under the License.

RTMP Message Format

Adobe’s Real Time Messaging Protocol (RTMP) describes RTMP as “an
application-level protocol designed for multiplexing and packetizing multimedia
transport streams (such as audio, video, and interactive content) over a suitable
transport protocol (such as TCP)”. One of the most important features of RTMP is
the Chunk Stream. Chunk Stream multiplexes, packetizes and prioritizes messages
on the wire. Chunking and prioritizing messages is the “RT” (i.e. Real Time)
within RTMP. RTMP Message has two sections. A message header followed by a
message payload:

e The format of the message header is describe below

0 1 2 3
©012345678901234567890123456789201
t-t-t-t-t-t-t-F-t-t-t-F-t-t-t—F—t-t-t—F-t-F-t—t-t-t-F-t-t-t-F+-+-+

| Message Type | Payload length

I (1 byte) | (3 bytes)

s S T e e e St S e Kk ot At ot e St ST SR R
| Timestamp |
| (4 bytes) |
B R it e e e e e Sl T T E e
| Stream ID |

| (3 bytes)

t-t—t-t—t-t—t-t—t-t—F-t—F-t—t-t—F-t—F-F—F-F—+-+-+

e There are two message types reserved for media messages.
o The message type value of 8 is reserved for audio message
o The message type value of 9 is reserved for video messages
e Message payload follows the header. The payload for example could contain
compressed audio data or compressed video data. RTMP knows nothing about the
payload, including how to process it. If we want to add new codec types they
have to be defined where the actual payload internals are defined. Flash
Video (FLV) is a container file format where AV payload internals, including
the codecs, are defined.
e Please see the original RTMP (in various locations) & FLV (in Annex E. on
page 68) specification for the endianness (aka byte order) of the data
format on the wire.

https://rtmp.veriskope.com/pdf/video_file_format_spec_v10_1.pdf
https://rtmp.veriskope.com/pdf/rtmp_specification_1.0.pdf
https://rtmp.veriskope.com/pdf/video_file_format_spec_v10_1.pdf

A TidBit About FLV File Format

FLV file is a container for AV data. The file consists of alternating
back-pointers and tags. Each tag is accompanied by data related to that tag. Each
TagType within an FLV file is defined by 5 bits. AUDIODATA has a tag type of 8
and VIDEODATA has a tag type of 9. Note: these Tag Types map to the same Message
Type IDs in the RTMP spec. This is by design. Each Tag Types of 8 or 9 is
accompanied by an AudioTagHeader or VideoTagHeader. It's common to think of RTMP
in conjunction with FLV. That said, RTMP is a protocol and FLV is a file
container. This is why they are originally defined in separate specifications.
This enhancement spec is enhancing both RTMP and FLV.

Current VideoTagHeader
Below is the VideoTagHeader format for the pre 2023 FLV spec (i.e. ver 10.1.2.01):

Table 2: Current VideoTagHeader

Field Type Comment

Type of video frame. The following values are defined:
= key frame (for AVC, a seekable frame)

= inter frame (for AVC, a non-seekable frame)

= disposable inter frame (H.263 only)

= generated key frame (reserved for server use only)
= video info/command frame

Frame Type UB [4]

odec Identifier. The following values are defined:
Sorenson H.263

= Screen video

= 0n2 VP6

= On2 VP6 with alpha channel

= Screen video version 2

= AVC

CodecID UB [4]

No abhowdNO a P wON =
I}

The following values are defined:
L 0® = AVC sequence header
AVCPacketType ﬁigcodGCID =7 1 = AVC NALU
2 = AVC end of sequence (lower level NALU sequence ender is
not REQUIRED or supported)

IF AVCPacketType == 1
Composition time offset
IF CodecID == 7 ELSE
SI24 0
See ISO 14496-12, 8.15.3 for an explanation of composition
times. The offset in an FLV file is always in milliseconds.

CompositionTime

Note: We have 4 bits to define video CodecID, luckily not all values are taken. We will leverage
available values to define additional video CodecIDs. Whew, we have room to define new video
formats. We can leverage the unused bits to achieve unlimited codec expansion. Please see the

ENHANCEMENT TO RTMP & FLV sections below for the enhancement descriptions.

https://rtmp.veriskope.com/pdf/video_file_format_spec_v10_1.pdf

ENHANCEMENT TO RTMP & FLV ARE DESCRIBED BELOW

Enhancing onMetaData
The FLV metadata object SHALL be carried in a SCRIPTDATA tag named onMetaData.
The available properties (as described in the ELV file format specification 10.1)

differ depending on the software creating the FLV file. The videocodecid property
has been enhanced to support FOURCC (i.e. Four-character ASCII code, such as
‘avl1’, encoded as UI32) values. Typical metadata object properties include:

Table: onMetaData Properties

Property Name Type Comment

audiocodecid number Audio codec ID used in the file (see E.4.2.1 for available SoundFormat values).
audiodatarate number Audio bit rate in kilobits per second

audiodelay number Delay introduced by the audio codec in seconds

audiosamplerate number Frequency at which the audio stream is replayed

audiosamplesize number Resolution of a single audio sample

canSeekToEnd boolean Indicating the last video frame is a key frame

creationdate string Creation date and time

duration number Total duration of the file in seconds

filesize number Total size of the file in bytes

framerate number Number of frames per second

height number Height of the video in pixels

stereo boolean Indicating stereo audio

videocodecid number Video codec ID used in the file (see E.4.3.1 for available CodecID values).

When EourCC is used to signal the codec, this property is set to a FOURCC value. Note: A
FOURCC value is big endian relative to the underlying ASCII character sequence (e.g. 'ave1l'
== 0x61763031 == 1635135537.0).

videodatarate number Video bit rate in kilobits per second

width number Width of the video in pixels

Defining Additional Video Codecs

Below VideoTagHeader is extended to define additional video codecs and the
supporting signaling while keeping backwards compatibility intact. The
ExVideoTagHeader is future proof for defining additional codecs and the
accompanying signaling. During parsing, logic must gracefully fail if at any
point important signaling/flags (ex. FrameType, IsExHeader, ExHeaderInfo) are not
understood.

Table 4: Extended VideoTagHeader

Field Type Comment

https://rtmp.veriskope.com/pdf/video_file_format_spec_v10_1.pdf#page=84
https://rtmp.veriskope.com/pdf/video_file_format_spec_v10_1.pdf#page=76
https://rtmp.veriskope.com/pdf/video_file_format_spec_v10_1.pdf#page=78
https://en.wikipedia.org/wiki/FourCC

IsExHeader | FrameType

uB[4]

IF (UB[4] & ob160@) != 0 {
IsExHeader = true
// Signals to not interpret CodecID UB[4] as a codec identifier. Instead
// these UB[4] bits are interpreted as PacketType which is then followed
// by UI32 FourCC value.

} ELSE {
IsExHeader = false
// Use CodecID values as described

// in the pre 2023 FLV spec (i.e. ver 10.1.2.01):
}

// see ExVideoTagHeader section for description of PacketType
IF PacketType != PacketTypeMetaData {

// signal the type of video frame.

FrameType = (UB[4] & 6b0111).

The following FrameType values are defined:

0 = reserved

1 = key frame (a seekable frame)

2 = inter frame (a non-seekable frame)

3 = disposable inter frame (H.263 only)

4 = generated key frame (reserved for server use only)
5 = video info/command frame

6 = reserved

7 = reserved

IF FrameType == 5, the payload will not contain video data. The
VideoTagHeader will be followed by a UI8 and have the following meaning:
- @ = Start of client-side seeking video frame sequence
- 1 = End of client-side seeking video frame sequence

Note: Backwards compatibility is preserved since the IsExHeader bit was
always part of FrameType UB[4] but never defined/used. Pre 20623 FrameType
values never reached 8 and the IsExHeader flag (aka most significant bit of
FrameType UB[4]) was always zero in pre Y2023 specs).

CodecID

IF IsExHeader == 0
UB[4]

Codec Identifier. The following values are defined:
0 = Reserved

= Reserved

= Sorenson H.263

= Screen video

= 0n2 VP6

On2 VP6 with alpha channel
= Screen video version 2

= AVC

= Reserved

Reserved

10 = Reserved

11 = Reserved

12 = Reserved

13 = Reserved

14 = Reserved

15 = Reserved

oONO T WON =
1l

(o)
"

Note: Values remain as before (i.e. no changes made). Please note if the
IsExHeader flag is set (see above) we switch into FourCC video mode defined
below. That means that CodecId UB[4] bits are not interpreted as a codec
identifier. Instead these UB[4] bits are interpreted as a PacketType. Another

https://rtmp.veriskope.com/pdf/video_file_format_spec_v10_1.pdf

way of stating this: the UB[4] bits are either CodecID or PacketType as part
of the ExHeaderInfo. This is signaled by the IsExHeader flag.

ExVideoTagHeader Description Below
note: ExVideoTagHeader header is present IF IsExHeader flag is set.

0 = PacketTypeSequenceStart
1 = PacketTypeCodedFrames
2 = PacketTypeSequenceEnd

// CompositionTime Offset is implied to equal zero. This is

// an optimization to save putting SI24 composition time value of zero on
// the wire. See pseudo code below in the VideoTagBody section

3 = PacketTypeCodedFramesX

// VideoTagBody does not contain video data. VideoTagBody

// instead contains an AMF encoded metadata. See Metadata Frame

// section for an illustration of its usage. As an example, the metadata
// can be HDR information. This is a good way to signal HDR

// information. This also opens up future ways to express additional

PacketType IF IsExHeader ==) .
(i.e. not CodecId) UB[4] ;; metadata that is meant for the next video sequence.
// note: presence of PacketTypeMetadata means that FrameType
// flags at the top of this table should be ignored
4 = PacketTypeMetadata
// Carriage of bitstream in MPEG-2 TS format
// note: PacketTypeSequenceStart and PacketTypeMPEG2TSSequenceStart
// are mutually exclusive
5 = PacketTypeMPEG2TSSequenceStart
6 = Reserved
14 = reserved
15 = reserved
The following are the currently defined FourCC values to signal video codecs.
Video FourCC U132 AVl = { 'a’, 'v', '@", '"1" }

VP9 = { 'v', 'p', '8, '9' }
HEVC = { 'h', 'v', '¢', '1' }

VideoTagBody Description Below

IF PacketType == PacketTypeMetadata {
// The body does not contain video data. The body is an AMF encoded metadata.
// The metadata will be represented by a series of [name, value] pairs.
// For now the only defined [name, value] pair is [“colorInfo”, Object]
// See Metadata Frame section for more details of this object.
/1
// For a deeper understanding of the encoding please see description
// of SCRIPTDATA and SSCRIPTDATAVALUE in the FLV file spec.
DATA = [“colorInfo”, Object]

} ELSE IF PacketType == PacketTypeSequenceEnd {
// signals end of sequence

}

IF FourCC == AV1 {
IF PacketType == PacketTypeSequenceStart {
// body contains a configuration record to start the sequence
DATA = [AViCodecConfigurationRecord]
} ELSE IF PacketType == PacketTypeMPEG2TSSequenceStart {
DATA = [AV1VideoDescriptor]

https://rtmp.veriskope.com/pdf/video_file_format_spec_v10_1.pdf#page=80
https://aomediacodec.github.io/av1-isobmff/#av1codecconfigurationbox-section
https://aomediacodec.github.io/av1-mpeg2-ts/#av1-video-descriptor

} ELSE IF PacketType == PacketTypeCodedFrames {
// body contains one or more OBUs which MUST represent a single temporal unit

DATA = [Series of coded frames]

}

If FourCC == VP9 {

IF PacketType == PacketTypeSequenceStart {
// body contains a configuration record to start the sequence

DATA = [VP nfigurationRecord]
} ELSE IF PacketType == PacketTypeCodedFrames {

// body MUST contain full frames
DATA = [Series of coded frames]

}

}
If FourCC == HEVC {

IF PacketType == PacketTypeSequenceStart {
// body contains a configuration record to start the sequence
// See ISO 14496-15, 8.3.3.1.2 for the description of HEVCDecoderConfigurationRecord
DATA = [HEVCDecoderConfigurationRecord]

} ELSE IF PacketType == PacketTypeCodedFrames || PacketType == PacketTypeCodedFramesX {
IF PacketType

} ELSE {

== PacketTypeCodedFrames {

// See ISO 14496-12, 8.15.3 for an explanation of composition times.
// The offset in an FLV file is always in milliseconds.

SI24 = [CompositionTime Offset]

// CompositionTime Offset is implied to equal zero. This is
// an optimization to save putting SI24 value on the wire

}

// Body contains one or more NALUs; full frames are required
DATA = [HEVC NALU]

Extending NetConnection connect Command

When a client connects to an RTMP server it sends a connect command to the

The command structure sent from the client to the server contains a
Command Object. The Command Object is made up of name-value pairs. This is where
the client indicates what audio and video codecs it supports. This name-value
pair list will need to be extended to declare newly defined codecs, or any other
enhancements, that are supported by the client. Following is the description of a
new name-value pair used in Command Object of the connect command.

server.

Table 5: new name-value pair that can be set in the Command Object

of Strings

to a fourCC value (i.e. a string that is a
sequence of four bytes) representing a supported
video codec.

Property Type Description Example Value
The enhanced list of supported codecs. It's a
strict array of dense ordinal indices. Each entry
fourCclList Strict Array |in the array is of String Type. Each entry is set [“ave1”, “vp89”, “hvel”]

https://www.webmproject.org/vp9/mp4/#vp-codec-configuration-box
https://rtmp.veriskope.com/docs/spec/#7211connect
https://en.wikipedia.org/wiki/FourCC

Metadata Frame

To support various types of video metadata, the FLV container specification has
been enhanced. The VideoTagHeader has been extended to define a new
PacketTypeMetadata (see Table 4) whose payload will contain an AMF encoded
metadata. The metadata will be represented by a series of [name, value] pairs.
For now the only defined [name, value] pair is [“colorInfo”, Object]. When
leveraging PacketTypeMetadata to deliver HDR metadata, the metadata MUST be sent
prior to the video sequence, scene, frame or such that it affects. Each time a
new colorInfo object is received it invalidates and replaces the current one. To
reset to the original color state you can send colorInfo with a value of
Undefined (the RECOMMENDED approach) or an empty object (i.e., “{}").

It is intentional to leverage a video message to deliver PacketTypeMetadata
instead of other RTMP Message types. One benefit of leveraging a video message is
to avoid any racing conditions between video messages and other RTMP message
types. Given this, once your colorInfo object is parsed, the read values MUST be
processed in time to affect the first frame of the video section which follows
the colorInfo object.

The colorInfo object provides HDR metadata to enable a higher quality image
source conforming to BT.2020 (aka. Rec. 2020) standard. The properties of the
colorInfo object, which are encoded in an AMF message format, are defined below.

Note:

e For content creators: Whenever it behooves to add video hint information via
metadata (ex. HDR) to the FLV container it is recommended to add it via
PacketTypeMetadata. This may be done in addition (or instead) to encoding
the metadata directly into the codec bitstream.

e The object encoding format (i.e. AMFO or AMF3) is signaled during the
connect command.

js

/]

// HDR metadata information which intended to be surfaced in the
// protocol/container outside the encoded bit stream.
/]
// Note: Not all properties are guaranteed to be present when the colorInfo object
// s serialized. Presence of Serialized properties will depend on how the original
// content was mastered, encoded and intent
//
colorInfo = {
colorConfig: {

https://rtmp.veriskope.com/docs/spec/#7211connect

// number of bits used to record the color channels for each pixel
bitDepth: Number, // SHOULD be 8, 10 or 12

//

// colorPrimaries, transferCharacteristics and matrixCoefficients are defined
// in ISO/IEC 23091-4/ITU-T H.273. The values are an index into

// respective tables which are described in “Colour primaries”,

// "Transfer characteristics" and "Matrix coefficients" sections.

// It is RECOMMENDED to provide these values.

/1

// indicates the chromaticity coordinates of the source color primaries
colorPrimaries: Number, // enumeration [0-255]

// opto-electronic transfer characteristic function (ex. PQ, HLG)
transferCharacteristics: Number, // enumeration [0-255]

// matrix coefficients used 1in deriving luma and chroma signals

matrixCoefficients: Number, // enumeration [0-255]
}’
hdrCll: {
/]
// maximum value of the frame average light level
// (in 1 cd/m2) of the entire playback sequence
/]
maxFall: Number, // [0.0001-10000]
!/
// maximum light level of any single pixel (in 1 cd/m2)
// of the entire playback sequence
//
maxCLL: Number, // [0.0001-10000]
}’
!/

// The hdrMdcv object defines mastering display (i.e., where
// creative work is done during the mastering process) color volume (aka mdcv)
// metadata which describes primaries, white point and min/max luminance. The
// hdrMdcv object SHOULD be provided.
//
// Specification of the metadata along with its ranges adhere to the
// ST 2086:2018 - SMPTE Standard (except for minLuminance see
// comments below)
!/
hdrMdcv: {
!/
// Mastering display color volume (mdcv) xy Chromaticity Coordinates within CIE
// 1931 color space.

/7

// Values SHALL be specified with four decimal places. The x coordinate SHALL
// be in the range [0.0001, 0.7400]. The y coordinate SHALL be

// in the range [0.0001,

/!

redX: Number,
redyY: Number,
greenX: Number,
greenY: Number,
blueX: Number,
blueY: Number,
whitePointX: Number,
whitePointY: Number,
/!

0.8400].

// max/min display luminance of the mastering display (in 1 cd/m2 de. nits)

!/
// note: ST 2086:2018 -

SMPTE Standard specifies minimum display mastering

// luminance in multiples of 0.0001 cd/m2.

/7

// For consistency we specify all values

// in 1 cd/m2. Given that a hypothetical perfect screen has a peak brightness

// of 10,000 nits and a

black level of .0005 nits we do not need to

// switch units to 0.0001 cd/m2 to increase resolution on the lower end of the

// minLuminance property. The ranges (in nits) mentioned below suffice

// the theoretical limit for Mastering Reference Displays and adhere to the
// SMPTE ST 2084 standard (aka PQ) which is capable of representing full gamut

// of luminance level.

/!
maxLuminance: Number,
minLuminance: Number,

s

// [5-10000]
// [0.0001-5]

Table 6: Flag values for the videoFunction property

Function Flag Usage Value
SUPPORT_VID_CLIENT_SEEK Indicates that the client can perform frame-accurate seeks. 0x0001
Indicates that the client has support for HDR video. Note:
Sl AL S I Implies support for colorInfo Object within PacketTypeMetadata. 2 Ll
SUPPORT_VID_CLIENT PACKET TYPE_METADATA Indicates that the ?11ent has supporF for PacketTypeMetadata. See 0x0004
Metadata Frame section for more detail.
The large-scale tile allows the decoder to extract only an
interesting section in a frame without the need to decompress the
SUPPORT_VID_CLIENT_LARGE_SCALE_TILE entire frame. Support for this feature is not required and is 0x0008

assumed to not be implemented by the client unless this property
is present and set to true.

Above

values can be combined via logical OR

Action Message Format (AMFo vs AMF3)

Action Message Format (AMF) is a compact binary format that is used to serialize
script data. AMF has two versions: AMF © [AMF@] and AMF 3 [AMF3]. One way AMF3
improves on AMFO is by optimizing the payload size on the wire. To understand the
full scope of the optimizations please see the links above. It is RECOMMENDED to
support AMF3 in the RTMP solution. It is nice to have AMF3 support within the FLV
file. You should understand the ecosystem before adding AMF3 data to your FLV
files.

The way to insure support for AMF3 in RTMP is by:

e Adding support for Command Message, Data Message and Shared Object Message
and types which use AMF3 form.

e Signaling in the connect command that the object encoding format is AMF3.

Note: RTMP has had AMF3 as part of its specification for some time now. During
the handshake the client declares whether it has support for AMF3.
The way to insure support for AMF3 in FLV is by:

e Adding a new TagType 15 (i.e., not 18) which supports SCRIPTDATA which is
encoded via AMF3 (i.e., similar to the way Data Message is handled)

Note: Prior to Y2023 FLV file format did not have AMF3 as part of its SCRIPTDATA
specification.

Protocol Versioning

There is no need for a version bump within enhanced RTMP for either the RTMP
handshake sequence or the FLV header file version field. All of the enhancements
are triggered via the newly defined additions to the bitstream format which don’t
break legacy implementations. Enhanced RTMP is self describing in its
capabilities.

Documentation Versioning

Overview

This section outlines our standardized approach for versioning our specification
documentation. Effective versioning ensures consistency, enables users to

https://rtmp.veriskope.com/pdf/amf0-file-format-specification.pdf
https://rtmp.veriskope.com/pdf/amf3-file-format-spec.pdf
https://rtmp.veriskope.com/docs/spec/#711command-message-20-17
https://rtmp.veriskope.com/docs/spec/#712data-message-18-15
https://rtmp.veriskope.com/docs/spec/#713shared-object-message-19-16
https://rtmp.veriskope.com/docs/spec/#7211connect
https://rtmp.veriskope.com/docs/spec/#712data-message-18-15

identify the latest version easily, and facilitates collaboration among team
members.

File Naming Convention

We name the documentation files with a clear identifier and the major version
number .

Example:
enhanced-rtmp-v2.pdf

Version Information Inside the Document

We include a dedicated section or metadata within each document to specify the
version details which includes the major version number, date, and stage of
development (alpha/beta/release).

Example:
Status: v2-2024-02-26-a1

Calendar Versioning Format Description

The format for versioning documents is structured as follows:

o v#-yyy-mm-dd-[a|b|r]#:

e v#: Major version number for tracking the progression of the enhanced
RTMP development.

e yyyy-mm-dd: Date when the document was updated.

e [a]|b|r]: Suffix to distinguish between the alpha, beta, and release
stage.

® #: Minor version number for a particular date. Increments for multiple
versions on the same date.

This format provides a comprehensive overview of each version's status and
chronological order, facilitating effective tracking and management of the
enhanced RTMP specification development.

